Más generalmente, si
$\sum_{k=1}^n a_k = 0
$
entonces
$\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_k x^{b_k}}{x-1}
=\sum_{k=1}^n a_kb_k
$.
Dos sencillas pruebas.
1) L'Hôpital:
$\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_k x^{b_k}}{x-1}
=\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_kb_k x^{b_k-1}}{1}
=\sum_{k=1}^n a_kb_k
$.
2) Primaria con exponentes enteros positivos:
Desde entonces,
si $b$ es un entero positivo,
$\lim_{x \to 1} \dfrac{x^b-1}{x-1}
=\lim_{x \to 1} \sum_{j=0}^{b-1} x^j
=b
$,
$\begin{array}\\
\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_k x^{b_k}}{x-1}
&=\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_k (x^{b_k}-1+1)}{x-1}\\
&=\lim_{x \to 1} \left(\dfrac{\sum_{k=1}^n a_k (x^{b_k}-1+1)}{x-1}\right)\\
&=\lim_{x \to 1} \left(\dfrac{\sum_{k=1}^n a_k (x^{b_k}-1)}{x-1}+\dfrac{\sum_{k=1}^n a_k }{x-1}\right)\\
&=\lim_{x \to 1} \dfrac{\sum_{k=1}^n a_k (x^{b_k}-1)}{x-1}\\
&=\lim_{x \to 1} \sum_{k=1}^n \dfrac{a_k (x^{b_k}-1)}{x-1}\\
&=\lim_{x \to 1} \sum_{k=1}^n a_k\dfrac{ x^{b_k}-1}{x-1}\\
&= \sum_{k=1}^n a_k\lim_{x \to 1}\dfrac{ x^{b_k}-1}{x-1}
\qquad\text{since all the limits exist}\\
&= \sum_{k=1}^n a_kb_k
\qquad\text{if all } b_k \text{ are positive integers}\\
\end{array}
$