Demostrar que$$I=\int_0^\infty \frac{\ln(1+x+x^2)}{1+x^2}dx=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac43G$$
He encontrado esta integral en mi notebook y quizás me he encontrado antes, ya que se ve muy familiar. De todos modos pensé que es bastante trivial integral, así que voy a resolverlo rápidamente, pero estoy teniendo un duro momento para terminarlo. Yo seguía con su truco:
$$I(a)=\int_0^\infty \frac{\ln((1+x^2)a+x)}{1+x^2}dx\Rightarrow I'(a)=\int_0^\infty \frac{dx}{a+x+ax^2}$$ $$=\frac1a\int_0^\infty \frac{dx}{\left(x+\frac{1}{2a}\right)^2+1-\frac{1}{4a^2}}=\frac{1}{a}\frac{1}{\sqrt{1-\frac{1}{4a^2}}}\arctan\left(\frac{x+\frac{1}{2a}}{\sqrt{1-\frac{1}{4a^2}}}\right)\bigg|_0^\infty$$$$=\frac{\pi}{\sqrt{4a^2-1}}-\frac{2}{\sqrt{4a^2-1}}\arctan\left(\frac{1}{\sqrt{4a^2-1}}\right)=\frac{2\arctan\left(\sqrt{4a^2-1}\right)}{\sqrt{4a^2-1}}$$ Podemos probar fácilmente a través de la sustitución de $x\to \frac{1}{x}$ que $I(0)=0$ así tenemos que: $$I=I(1)-I(0)=2\int_0^1 \frac{\arctan\left(\sqrt{4a^2-1}\right)}{\sqrt{4a^2-1}}da$$ Ahora yo pensaba acerca de dos sustituciones: $$ \overset{a=\frac12\cosh x}=\int_{\operatorname{arccosh}(0)}^{\operatorname{arccosh}(2)} \arctan(\sinh x)dx$$ $$\overset{a=\frac12\sec x}=\int_{\operatorname{arcsec}(0)}^{\frac{\pi}{3}}\frac{x}{\cos x}dx$$ Pero en ambos casos el límite inferior es molesto y creo que me estoy perdiendo algo aquí (tal vez obvio). Así que me encantaría recibir alguna ayuda en el orden de acabar con esto.
Edit: Se puede aplicar una vez más su truco. Primero, considere: $$I(t)=\int_0^1 \frac{2\arctan(t\sqrt{4a^2-1})}{\sqrt{4a^2-1}}da\Rightarrow I'(t)=2\int_0^1 \frac{1}{1+t^2(4a^2-1)}da$$ $$=\frac{1}{t\sqrt{1-t^2}}\arctan\left(\frac{2at}{\sqrt{1-t^2}}\right)\bigg|_0^1=\frac{1}{t\sqrt{1-t^2}}\arctan\left(\frac{2t}{\sqrt{1-t^2}}\right)$$ Así que una vez más tenemos $I(0)=0$, lo $I=I(1)-I(0)$. $$\Rightarrow I=\int_0^1\frac{1}{t\sqrt{1-t^2}}\arctan\left(\frac{2t}{\sqrt{1-t^2}}\right)dt\overset{t=\sin x}=\int_0^\frac{\pi}{2}\frac{\arctan(2\tan x)}{\sin x}dx$$ En este punto, Mathematica puede evaluar la integral: $$I=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac43G$$ No probé la última integral todavía, pero estoy pensando de Feynman de nuevo $\ddot \smile$.
Edit 2: Encontré que ya estaba en él hace algún tiempo, y en realidad lo había publicado aquí, lo que significa que he resuelto antes de usar su truco, pero ahora mismo no recuerdo cómo lo hice yo.
Así que dadas las circunstancias, estoy seguro de que puede ser resuelto a partir de mi enfoque, pero si usted tiene cualesquiera otras maneras, a continuación, siéntase libre para compartir.
Respuestas
¿Demasiados anuncios?Comience por dejar $x\mapsto\tan x$ obtenemos $$\int_0^\infty\frac{\log(1+x+x^2)}{1+x^2}\mathrm dx\stackrel{x\mapsto\tan x}=\int_0^\frac\pi2\log(1+\tan x+\tan^2x)\mathrm dx=\int_0^\frac\pi2\log\left(\frac{1+\sin x\cos x}{\cos^2x}\right)\mathrm dx$$ Dividiendo el logaritmo nos quedamos con una norma integral, solucionable mediante la diferenciación de la Función Beta, por ejemplo, y otra que ya he mencionado en los comentarios. Para ser precisos obtenemos \begin{align*} \int_0^\frac\pi2\log\left(\frac{1+\sin x\cos x}{\cos^2x}\right)\mathrm dx&=\pi\log 2+\int_0^\frac\pi2\log(1+\sin x\cos x)\mathrm dx\\ &=\pi\log 2+2\int_0^\frac\pi4\log\left(1+\frac12\sin2x\right)\mathrm dx\\ &=\pi\log 2+\int_0^\frac\pi2\log\left(1+\frac12\sin x\right)\mathrm dx\\ &=\frac\pi2\log2+\int_0^\frac\pi2\log\left(2+\sin x\right)\mathrm dx \end{align*} El último integral de la $-$ incluso un caso más general $-$ se examina dentro de este AoPS hilo. Una expresión se deduce por el usuario gustin33. No voy a copiar su derivación aquí desde su propia solución es bastante impresionante. Para el caso de que se obtuvo $$\int_0^\frac\pi2\log\left(2+\sin x\right)\mathrm dx=\frac{4G}3+\frac\pi3\log(2+\sqrt3)-\frac\pi2\log2 $$ En general, los rendimientos para el resultado.
$$\therefore~\int_0^\infty\frac{\log(1+x+x^2)}{1+x^2}\mathrm dx~=~\frac{4G}3+\frac\pi3\log(2+\sqrt3)$$
El punto crucial de la post vinculado es el de la identidad $$\int_0^\frac\pi2\log(a+\sin x)\mathrm dx=2\operatorname{Ti}_2(a+\sqrt{a^2-1})-\frac\pi2(\log2+\cosh^{-1}a)$$ Para $a=2$ el resultado de la siguiente manera. Voy a ver si puedo encontrar otra prueba de identidad; de lo contrario, solo voy a dejar esto aquí.
EDICIÓN I
Tal vez estoy en el camino correcto ahora! El uso de la representación integral para la Dilogarithm utilizado en este post y reexpressing la Tangente Inversa de la Integral en términos de la Dilogarithm así obtenemos $$\pequeño \begin{align*} \operatorname{Ti}_2(a+\sqrt{a^2-1})&=\frac1{2i}\left[\operatorname{Li}_2(ia+i\sqrt{a^2-1})-\operatorname{Li}_2(-ia+-i\sqrt{a^2-1})\right]\\ &=\frac1{2i}\left[\int_0^1\frac{ia+i\sqrt{a^2-1}}{(ia+i\sqrt{a^2-1})t-1}\log t\mathrm dt-\int_0^1\frac{-ia+-i\sqrt{a^2-1}}{(-ia+-i\sqrt{a^2-1})t-1}\log t\mathrm dt\right]\\ &=\frac{a+\sqrt{a^2-1}}2\int_0^1\left[\frac1{(-1)+i(a+\sqrt{a^2-1})t}+\frac1{(-1)-i(a+\sqrt{a^2-1})t}\right]\log t\mathrm dt\\ &=-(a+\sqrt{a^2-1})\int_0^1\frac{\log t}{1+(a+\sqrt{a^2-1})^2t^2}\mathrm dt \end{align*} $$ Mabye esta integral es de utilidad para alguien. Voy a intentar encontrar algo de lo que es útil para mí también.
EDICIÓN II
La integral puede también ser reducida a la búsqueda de $$\int_0^1\frac{\arctan t}{t^2+t+1}\frac{1-t^2}{1+t^2}\mathrm dt$$ Estoy casi seguro de que he visto esto antes también. Voy a buscarlo.
Solución 1.
Mediante la división de la integral en $1$ y dejando $x\to \frac{1}{x}$ en la segunda parte, se obtiene:$$I=\int_0^\infty \frac{\ln(1+x+x^2)}{1+x^2}dx=\int_0^1 \frac{\ln(1+x+x^2)+\ln\left(1+\frac{1}{x}+\frac{1}{x^2}\right)}{1+x^2}dx$$ $$=2\int_0^1 \frac{\ln(1+x+x^2)}{1+x^2}dx-2\int_0^1 \frac{\ln x}{1+x^2}dx$$ A través de la sustitución de $x=\frac{1-t}{1+t}\Rightarrow dx=-\frac{2}{(1+t)^2}dt$ y el uso de este, se obtiene: $$I=2\int_0^1\frac{\ln\left(\frac{3+t^2}{(1+t)^2}\right)}{1+t^2}dt+2G=2\int_0^1 \frac{\ln(3+t^2)}{1+t^2}dt-4\int_0^1\frac{\ln(1+t)}{1+t^2}+2G$$ El segundo es un conocido Putnam integral, y para la primera podemos tratar de Feynman del truco. $$I=2J-\frac{\pi}{2}\ln 2+2G, \quad J=\int_0^1 \frac{\ln(3+x^2)}{1+x^2}dx$$
$$J(a)=\int_0^1 \frac{\ln(2+a(1+x^2))}{1+x^2}dx\Rightarrow J'(a)=\frac1a\int_0^1 \frac{dx}{\frac{a+2}{a}+x^2}dx$$ $$=\frac1a\sqrt{\frac{a}{a+2}}\arctan\left(x\sqrt{\frac{a}{a+2}}\right)\bigg|_0^1=\frac{1}{\sqrt{a(a+2)}}\arctan\left(\sqrt{\frac{a}{a+2}}\right)$$ Estamos buscando para encontrar $J=J(1)$, pero también tenemos: $J(0)=\frac{\pi}{4}\ln 2$así: $$J=J(1)-J(0)+J(0)=\underbrace{\int_0^1 J'(a)da}_{=K}+\frac{\pi}{4}\ln 2 $$ Ahora dejando $\sqrt{\frac{a+2}{a}}=x\Rightarrow \frac{1}{\sqrt{a(a+2)}}da=-a dx=-\frac{2}{x^2-1}dx\,$ nos da: $$K=\int_0^1 \frac{1}{\sqrt{a(a+2)}}\arctan\left(\sqrt{\frac{a}{a+2}}\right)da=2\int_\sqrt 3^\infty \frac{\arctan \left(\frac{1}{x}\right)}{x^2-1}dx$$ $$a=\frac{\pi}{2}\ln(2+\sqrt 3)-2\int_{\sqrt 3}^\infty \frac{\arctan x}{x^2-1}dx $$ $$H=2\int_{\sqrt 3}^\infty \frac{\arctan x}{x^2-1}dx\overset{x=\tan t}=-2\int_\frac{\pi}{3}^\frac{\pi}{2} \frac{t}{\cos(2t)}dt\overset{\large 2t=x+\frac{\pi}{2}}=\int_{\frac{\pi}{6}}^\frac{\pi}{2} \frac{\frac{\pi}{4}+\frac{x}{2}}{\sin x}dx$$ $$=\frac{\pi}{4}\ln\left(\tan\frac{x}{2}\right)\bigg|_\frac{\pi}{6}^\frac{\pi}{2}+\frac12 \int_0^\frac{\pi}{2}\frac{x}{\sin x}dx-\frac12\int_0^\frac{\pi}{6}\frac{x}{\sin x}dx$$ Las dos últimas integrales están vinculados en este post y el uso de sus valores, se obtiene: $$H=\frac{\pi}{4}\ln(2+\sqrt 3)+G+\frac{\pi}{12}\ln(2+\sqrt 3)-\frac23G=\boxed{\frac{\pi}{3}\ln(2+\sqrt 3)+\frac13G}$$ $$\Rightarrow \boxed{K=\frac{\pi}{6}\ln(2+\sqrt 3)-\frac13G}\Rightarrow \boxed{J=\frac{\pi}{6}\ln(2+\sqrt 3)+\frac{\pi}{4}\ln 2-\frac13G}$$ $$\Rightarrow I=\int_0^\infty \frac{\ln(1+x+x^2)}{1+x^2}dx=\boxed{\frac{\pi}{3}\ln(2+\sqrt 3)+\frac43G}$$
Solución 2.
Podemos empezar por considerar: $$A=\int_0^\frac{\pi}{2} \ln(2+\sin x)dx,\quad B=\int_0^\frac{\pi}{2}\ln(2-\sin x)dx$$ Como en mrtaurho's enfoque tenemos: $$I=\frac{\pi}{2}\ln 2 +A=\frac{\pi}{2}\ln 2+\frac12\left((A+B)+(A-B)\right)\tag 1$$ Una solución para $A-B\,$ se puede encontrar aquí. $$A-B=\int_0^\frac{\pi}{2}\ln\left(\frac{2+\sin x}{2-\sin x}\right)dx=-\frac{\pi}{3}\ln(2+\sqrt 3) +\frac{8}{3}G\tag2$$ Y para $A+B$ podemos utilizar directamente este resultado. $$A+B=\int_0^\frac{\pi}{2} \ln(4-\sin^2 x)=\int_0^\frac{\pi}{2} \ln(4\cos^2x +3\sin^2 x)dx$$$$=\pi \ln 2 +\int_0^\frac{\pi}{2} \ln\left(\cos^2 x+\frac34 \sin^2 x\right)dx=\pi\ln\left(1+\frac{\sqrt 3}{2}\right)\tag3$$ Ahora conectar $(2)$ e $(3)$ a $(1)$ se obtiene el resultado.
$$\boxed{I=\frac{\pi}{2}\ln 2+\frac12\left(\pi\ln(2+\sqrt 3)-\pi \ln 2-\frac{\pi}{3}\ln(2+\sqrt 3)+\frac83G\right)=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac43G}$$
Así que finalmente he encontrado una manera de tratar con él. Créditos a Cornel Ioan Valean , porque cuando vi su enfoque me di cuenta de lo fácil que podría haber resolver la integral.
He aquí una manera de continuar con mi enfoque. Tomemos la siguiente integral: $$\sf I(a)=\int_0^\frac{\pi}{2}\frac{\arctan(a\tan x)}{\sin x}dx\Rightarrow I'(a)=\int_0^\frac{\pi}{2}\frac{\sec x}{1+a^2\tan^2 x}dx$$ $$\sf =\int_0^\frac{\pi}{2}\frac{\cos x}{\cos^2 x+a^2\sin^2 x}dx\overset{\sin x=y}=\int_0^1 \frac{dy}{1+(a^2-1)y^2}=\frac{\arctan\sqrt{a^2-1}}{\sqrt{a^2-1}}$$ Ahora, en este punto me mantienen la toma de $\sf I(0)=0$ como referencia para obtener la integral que estamos buscando, que es $\sf I(2)$ , y el resultado fue claramente: $$\sf I=I(2)-I(0)=\int_0^2 \frac{\arctan\sqrt{a^2-1}}{\sqrt{a^2-1}}da$$ Y bueno, aquí es donde empezaron los problemas, porque me quedé tratando de sustituciones como: $\sf a=\sec x$ y no del trabajo con el límite inferior.
De todos modos un truco para evitar esto es simplemente no ser codicioso tomar $\sf I(0)=0$ y seguir con $\sf I(1)$, a saber: $$\rm I=\underbrace{I(2)-I(1)}_{=J}+I(1), \quad I(1)=\int_0^\frac{\pi}{2}\frac{x}{\sin x}dx$$ Ahora somos buenos para ir, ya que no es $\operatorname{arcsec }0$ que nos moleste. $$\rm J=\int_1^2 \frac{\arctan\sqrt{a^2-1}}{\sqrt{a^2-1}}da\overset{a=\sec x}=\int_0^\frac{\pi}{3}\frac{x}{\cos x}dx\overset{x=\frac{\pi}{2}-t}=\int_\frac{\pi}{6}^\frac{\pi}{2}\frac{\frac{\pi}{2}-t}{\sin t}dt$$ $$\rm=\frac{\pi}{2}\int_\frac{\pi}{6}^\frac{\pi}{2} \frac{1}{\sin t}dt- \int_0^\frac{\pi}{2} \frac{t}{\sin t}dt+\int_0^\frac{\pi}{6} \frac{t}{\sin t}dt$$ $$\sf \Rightarrow I=J+I(1)=\frac{\pi}{2}\ln\left(\tan \frac{x}{2}\right)\bigg|_\frac{\pi}{6}^\frac{\pi}{2}+\int_0^\frac{\pi}{6} \frac{t}{\sin t}dt$$ Y por último, con el resultado a partir de aquí, obtenemos: $$\sf I=\frac{\pi}{2}\ln(2+\sqrt 3)-\frac{\pi}{6}\ln(2+\sqrt 3)+\frac43G=\boxed{\frac{\pi}{3}\ln(2+\sqrt 3)+\frac43G}$$ Debo mantener un recordatorio para mí mismo, en orden a no ser codicioso, como tomar el camino más fácil a primera vista, $\sf I(0)$ en lugar de $\sf I(1)$ , en nuestro caso, $\ddot \smile$.
Pero si eres como yo y te encuentras atascado en: $$\sf I=\int_0^2\frac{\arctan\sqrt{a^2-1}}{\sqrt{a^2-1}}da=\int_0^2\frac{\operatorname{arcsec} a}{\sqrt{a^2-1}}da$$ Entonces no se preocupe, yo aprendí hace poco de Yaghoub Sharifi el truco para lidiar con el caso (ver aquí).
Básicamente tendríamos que dividir la integral como: $$\sf I=\int_0^1\frac{\operatorname{arcsec} a}{\sqrt{a^2-1}}da+\int_1^2\frac{\operatorname{arcsec} a}{\sqrt{a^2-1}}da$$ La segunda integral es nuestro viejo amigo de arriba, y para el primer caso tenemos que recurrir a la definición compleja de $\sf \arccos z$, es decir, $\sf -i\ln\left(z+\sqrt{z^2-1}\right)$. $$\sf \Rightarrow \frac{\operatorname{arcsec} a}{\sqrt{a^2-1}}=\frac{-\ln\left(\frac{1-\sqrt{1-a^2}}{a}\right)}{\sqrt{1-a^2}}$$ Y ahora a través de la sustitución de $a=\sin y$ todo va bien.