La fuerza de la gravedad sería la disminución en el punto de $B$ y el aumento en el punto de $A$. En realidad, esto sucede en todas las distancias, y es lo que provoca las mareas. Movimiento de la Luna hasta que toque la Tierra es sólo un caso extremo.
Mientras los campos gravitacionales son débiles (en este caso débil significa mucho menos de un agujero negro) usted puede simplemente añadir las fuerzas gravitacionales de la Tierra y la Luna.
En punto de $B$ el total de la fuerza está dada por:
$$ F_B = F_E - F_{MB} $$
because the two forces point in different directions and oppose each other. So $F < F_E$ and the gravitational field is less than the field of the Earth alone. At point $UN$ the total force is given by:
$$ F_A = F_E + F_{MA} $$
because the two forces point in the same direction and reinforce each other. So $F > F_E$ and the gravitational field is greater than the field of the Earth alone.
We can put numbers on this. I'll calculate the acceleration, which is the force per unit mass. At Earth's surface this is 1g, i.e. $9.81$ m/s$^2$, so $F_E = 9.81$ m/s$^2$. For a mass $M$ at a distance $r$ the acceleration is simply:
$$ a = \frac{GM}{r^2} \tag{1} $$
To calculate $F_{MB}$ we have to set $M$ equal to the mass of the Moon ($7.35 \times 10^{22}$ kg) and $r$ equal to the radius of the Moon ($1.74 \times 10^6$ m), and using equation (1) the acceleration is:
$$ a \approx 1.62 \text{m/s}^2 $$
To calculate $F_{MA}$ we set $r$ to the radius of the Moon plus the diameter of the Earth ($1.28 \times 10^7$ m), and using equation (1) the acceleration is:
$$ a \approx 0.023 \text{m/s}^2 $$
Combining these results and converting the accelerations to $g$ obtenemos:
Point B: 0.835g
Point A: 1.002g