Lo que hay! Puede utilizar la identidad de $\binom{k+2}2 = \sum_{i=0}^{k+1}i$.
Nuestros suma es $$\sum_{k=0}^n (-1)^k \binom{k+2}{2} = \sum_{k=0}^n (-1)^k \sum_{i=0}^{k+1}i$$
Por extraño $n$: Dejando $m=\frac {n-1}2$ y el emparejamiento de los términos obtenemos
$$\begin{align}\sum_{k=0}^n (-1)^k \sum_{i=0}^{k+1}i &= \sum_{j=0}^m [(-1)^{2j}\sum_{i=0}^{2j+1}i + (-1)^{2j+1}\sum_{i=0}^{2j+2}i] \\&=\sum_{j=0}^m [\sum_{i=0}^{2j+1}i -\sum_{i=0}^{2j+2}i] \\&= \sum_{j=0}^m-(2j+2) \\&= -2\sum_{j=0}^m(j+1) \\&= -2\sum_{j=1}^{m+1}j\\ &= -2[\binom{m+2}2-0] \\&= -(m+2)(m+1) \\&=-\frac{(n+3)(n+1)}4
\end{align}$$
Incluso para $n$: $$\begin{align} \sum_{k=0}^n (-1)^k \sum_{i=0}^{k+1}i &= \sum_{k=0}^{n-1} (-1)^k \sum_{i=0}^{k+1}i + \sum_{i=0}^{n+1}i
\\&= -\frac{((n-1)+3)((n-1)+1)}4 + \binom{n+2}2 \\
&=-\frac{n^2+2n}4 + \frac{n^2 + 3n + 2}{2}
\\&= \frac{ - n^2 - 2n + 2n^2 + 6n + 4}4 \\&=(\frac{n+2}2)^2
\end{align}$$