Deje $[f] \in \pi_{2n - 1}(S^n)$. Elegir un suave representante de $f: S^{2n - 1} \to S^n$. Deje $\omega$ ser un liso $n$-forma en $S^n$ con$$\int_{S^n} \omega = 1.$$Do we have that$$f^*\omega = d\alpha$$for some $(n -1 )$-form $\alpha$ on $S^{2n - 1}$?