deja $ \theta\in R$ y $ \alpha\neq\beta\neq\gamma $ y tal $$ \dfrac { \cos {( \alpha + \theta )}}{ \sin ^3{ \alpha }}= \dfrac { \cos {( \beta + \theta )}}{ \sin ^3{ \beta }}= \dfrac { \cos {( \gamma + \theta )}}{ \sin ^3{ \gamma }}$$
probar $$ \alpha + \beta + \gamma =n \pi $$
Mi intento: dejar $$ \dfrac { \cos {( \alpha + \theta )}}{ \sin ^3{ \alpha }}= \dfrac { \cos {( \beta + \theta )}}{ \sin ^3{ \beta }}= \dfrac { \cos {( \gamma + \theta )}}{ \sin ^3{ \gamma }}=k$$ entonces $$ \cos {( \alpha + \theta )}=k \sin ^3{ \alpha }, \quad \cos {( \beta + \theta )}=k \sin ^3{ \beta }, \quad\cos {( \gamma + \theta )}=k \sin ^3{ \gamma }$$ así que $$ \cos {( \alpha - \beta )}= \cos {[( \alpha + \theta )-( \beta + \theta )]}= \cos {( \alpha + \theta )} \cos {( \beta + \theta )}+ \sin {( \alpha + \theta )} \sin {( \beta + \theta )}$$ y seguir tal vez no pueda funcionar. Gracias.