$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 0}^{n}k{m \choose k}{n \choose k} & = \sum_{k = 0}^{n}k{n \choose k}{m \choose m - k} = \sum_{k = 0}^{n}k{n \choose k}\bracks{z^{m - k}}\pars{1 + z}^{m} \\[5mm] & = \sum_{k = 0}^{n}k{n \choose k}\braces{\vphantom{\Large A}\bracks{z^{m}}z^{k}\pars{1 + z}^{m}} = \bracks{z^{m}}\braces{\vphantom{\Large A}\pars{1 + z}^{m}\overbrace{\sum_{k = 0}^{n}{n \choose k}kz^{k}} ^{\ds{nz\,\pars{1 + z}^{n - 1}}}} \\[5mm] & = n\bracks{z^{m - 1}}\pars{1 + z}^{m + n - 1} = \bbx{\ds{n\,{m + n - 1 \choose m - 1}}} \end{align}
0 votos
También: math.stackexchange.com/q/1538415/42969 , math.stackexchange.com/q/1666358/42969 - todos encontrados con Enfoque0