$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}
{\large\tt\mbox{Note that}}\qquad\sum_{x = -\infty}^{\infty}{\sin\pars{x} \over x}
&=2\sum_{x = 0}^{\infty}{\sin\pars{x} \over x} - 1
\end{align}
Con Abel-Plana Fórmula:
\begin{align}
&\color{#c00000}{\large\sum_{x = -\infty}^{\infty}{\sin\pars{x} \over x}}
\\[3mm]&=2\bracks{\!\!\int_{0}^{\infty}
{\sin\pars{x} \over x}\,\dd x + \half\lim_{x \to 0}\!\!{\sin\pars{x} \over x}
+\ic\int_{0}^{\infty}\!\!
{{\sin\pars{\ic x}/\pars{\ic x}} - \sin\pars{-\ic x}/\pars{-\ic x}
\over \expo{2\pi x} - 1}\,\dd x\!} - 1
\\[3mm]&=2\pars{{\pi \over 2} + \half} - 1 = \color{#c00000}{\Large\pi}
\end{align}
$$
\color{#66f}{\large\piso{100\sum_{x = -\infty}^{\infty}{\sin\pars{x} \over x}}}
=\piso{100\,\pi} = \color{#66f}{\Large 314}
$$