Estoy tratando de utilizar los residuos para calcular $$\int_0^\infty\frac{\log x}{(1+x)^3}\,\operatorname d\!x.$$My first attempt involved trying to take a circular contour with the branch cut being the positive real axis, but this ended up cancelling off the term I wanted. I wasn't sure if there was another contour I should use. I also had someone suggest using the substitution $ x=e^z$, so the integral becomes $$\int_{-\infty}^\infty\frac{ze^z}{(1+e^z)^3}\,\operatorname d\!z$$so that the poles are the at the odd multiples of $i\pi$. Yo realmente no he trabajado esto, pero no parece la solución el autor buscaba (esta pregunta viene de un viejo examen preliminar).
¿Alguna sugerencia sobre cómo integrar?