$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{\sum_{k = 1}^{n}{n - 1 \choose k - 1}n^{n - k}\,\, k!} & =
n^{n}\sum_{k = 0}^{n - 1}{n - 1 \choose k}{\pars{k + 1}! \over n^{k + 1}}
\\[5mm] & =
n^{n}\sum_{k = 0}^{n - 1}{n - 1 \choose k}\pars{k + 1}!\ \overbrace{%
{1 \over \Gamma\pars{k + 1}}\int_{0}^{\infty}t^{k}\expo{-nt}\,\dd t}
^{\ds{\,\,\,\,\,\,=\ {1 \over n^{k + 1}}}}
\\[5mm] & =
n^{n}\int_{0}^{\infty}\expo{-nt}
\sum_{k = 0}^{n - 1}{n - 1 \choose k}\pars{k + 1}t^{k}\,\dd t
\\[5mm] & =
n^{n}\int_{0}^{\infty}\expo{-nt}\pars{1 + t}^{n - 2}\pars{1 + nt}\,\dd t
\\[5mm] & =
n^{n}\color{#f00}{\expo{n}}\bracks{%
n\int_{1}^{\infty}{\expo{-nt} \over t^{1 - n}}\,\dd t
-\pars{n - 1}\int_{1}^{\infty}{\expo{-nt} \over t^{2 - n}}\,\dd t}
\label{1}\tag{1}
\end{align}
La integración por partes de la RHS primera integral:
\begin{align}
n\int_{1}^{\infty}{\expo{-nt} \over t^{1 - n}}\,\dd t & =
-\int_{t\ =\ 1}^{t\ \to\ \infty}{\dd\expo{-nt} \over t^{1 - n}} =
\expo{-n} +
\pars{n - 1}\int_{1}^{\infty}{\expo{-nt} \over t^{2 - n}}\,\dd t
\\ & \mbox{}
\end{align}
\begin{equation}
\mbox{such that}\quad
n\int_{1}^{\infty}{\expo{-nt} \over t^{1 - n}}\,\dd t
-\pars{n - 1}\int_{1}^{\infty}{\expo{-nt} \over t^{2 - n}}\,\dd t =
\color{#f00}{\expo{-n}}
\label{2}\tag{2}
\end{equation}
Con \eqref{1} y \eqref{2}:
$$
\color{#f00}{\sum_{k = 1}^{n}{n - 1 \elegir k - 1}n^{n - k}\,\, k!} =
\color{#f00}{n^{n}}
$$