$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
El Uso De Euler Sustitución De$\ds{y = {\ic t^{2} \over 2\pars{t + 2\ic}}}$
con $\ds{t = \root{-y^{2} + 4y} - y\ic}$. Usted obtendrá
\begin{align}
&\int_{0}^{2}\pars{y + 8}\root{-y^{2} + 4y}\,\dd y
\\[5mm] = &\
\int_{0}^{2 - 2\ic}\bracks{-5 + 2\ic t - {t^{2} \over 8} +
{8 \over \pars{t + 2\ic}^{4}} + {40\ic \over \pars{t + 2\ic}^{3}} +
{2 \over \pars{t + 2\ic}^{2}} +
{20\ic \over t + 2\ic}}\,\dd t
\end{align}
lo que implica sencillo integraciones.
La respuesta es $\bbx{\ds{10\pi - {8 \over 3}}}$.