$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
a_{n} & \equiv{1 \over n}\,
{1\cdot3\cdot\ldots\cdot\pars{2n - 1} \over 2\cdot4\cdot\ldots\cdot\pars{2n}} =
{1 \over n}\,{\prod_{k = 1}^{n}\pars{2k - 1} \over
\prod_{q = 1}^{n}\pars{2q}}
\\[5mm] & ==
{1 \over n}\,{2^{n}\prod_{k = 1}^{n}\pars{k - 1/2} \over
2^{n}\prod_{q = 1}^{n}q} =
{1 \over n}\,{\pars{1/2}^{\overline{n}} \over n!} =
{1 \over n}\,{\Gamma\pars{1/2 + n}/\Gamma\pars{1/2} \over n!}
\\[5mm] & =
{1 \over n}\,
{\pars{n - 1/2}! \over n!}\,{1 \over \root{\pi}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{\pi^{-1/2} \over n}\,
{\root{2\pi}\pars{n - 1/2}^{n}\expo{-\pars{n - 1/2}} \over
\root{2\pi}n^{n + 1/2}\expo{-n}}
\\[5mm] & =
{\pi^{-1/2} \over n}\,
{n^{n}\bracks{1 - \pars{1/2}/n}^{n}\expo{1/2} \over
n^{n + 1/2}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{1 \over \root{\pi}}\,{1 \over n^{3/2}}
\\[5mm] &
\stackrel{\mrm{as}\ n\ \to\ \infty}{\Large\to}\,\,\,\bbx{0}
\end{align}
Tenga en cuenta que $\ds{\Gamma\pars{1/2} = \root{\pi}}$.