Como premisa que tenemos
$$
\eqalign{
& \left\lfloor {x - y} \right\rfloor = \left\lfloor {\left\lfloor x \right\rfloor - \left\lfloor y \right\rfloor + \left\{ x \right\} - \left\{ y \right\}} \right\rfloor = \cr
& = \left\lfloor x \right\rfloor - \left\lfloor y \right\rfloor + \left\lfloor {\left\{ x \right\} - \left\{ y \right\}} \right\rfloor = \cr
& = \left\lfloor x \right\rfloor - \left\lfloor y \right\rfloor - \left[ {\left\{ x \right\} < \left\{ y \right\}} \right] \cr}
$$
donde los corchetes indican la Iverson soporte.
Entonces podemos escribir
$$
\eqalign{
y q_{\,k} = \left\lfloor {{{q_{\,k - 1} } \over {a_{\,k} }}} \right\rfloor = \left\lfloor {{{\left\lfloor {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\rfloor } \over {a_{\,k} }}} \right\rfloor = \left\lfloor {{{{{q_{\,k - 2} } \over {a_{\,k - 1} }} - \left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \over {a_{\,k} }}} \right\rfloor = \cr
& = \left\lfloor {{{q_{\,k - 2} } \over {a_{\,k - 1} a_{\,k} }} - {1 \over {a_{\,k} }}\left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \right\rfloor = \cr
& = \left\lfloor {{{q_{\,k - 2} } \over {a_{\,k - 1} a_{\,k} }}} \right\rfloor - \left\lfloor {{1 \over {a_{\,k} }}\left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \right\rfloor + \left\lfloor {\left\{ {{1 \over {a_{\,k} }}{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\} - \left\{ {{1 \over {a_{\,k} }}\left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \right\}} \right\rfloor = \cr
& = \left\lfloor {{{q_{\,k - 2} } \over {a_{\,k - 1} a_{\,k} }}} \right\rfloor \cr}
$$
ya definitivamente
$$
\left\{ {{1 \over {a_{\,k} }}{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\} = \left\{ {{{\left\lfloor {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\rfloor + \left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \over {a_{\,k} }}} \right\} \ge \left\{ {{1 \over {a_{\,k} }}\left\{ {{{q_{\,k - 2} } \over {a_{\,k - 1} }}} \right\}} \right\}
$$
Por tanto, la vuelta hasta $q_{0}=n$ consigue
$$
q_{\,k} = \left\lfloor {{n \over {a_{\,1} \cdots a_{\,k - 1} a_{\,k} }}} \right\rfloor
$$
y la segunda parte de la siguiente manera.