(Voy a interpretar $L_2([0,1])$ como un verdadero espacio de Hilbert, ya que está asumiendo $B$ es bilineal, no sesqui-liear.)
Como @Martin Argerami argumento de la muestra, la instrucción es en general falso. Sin embargo, bajo el supuesto de que $\tau_B$ es una de Hilbert-Schmidt operador, podemos encontrar $\xi_B \in L_2([0,1]\times[0,1])$ tales que
$$
\tau_B f(x) = \int_{[0,1]} \xi_B(x,y)f(y)dy,
$$y
$$
B(f,g) = \int_{[0,1]\times[0,1]} \xi_B(x,y)g(x)f(y)dxdy.
$$ A Hilbert-Schmidt operator is defined as a bounded linear operator $T$satisfactoria
$$
\lVert T\rVert^2_{\text{HS}}=\sum_{i\in I} \lVert T\phi_i\rVert^2 = \sum_{i,j\in I} |\langle T\phi_i, \phi_j\rangle|^2<\infty
$$ for some orthonormal basis $\{\phi_i\}_{i\in I}$ of $H$. We can show that the above definition does not depend on the choice of $\{\phi_i\}_{i\in I}$ because if $\{\varphi_k\}_{k\in K}$ es otro ortonormales base, se tiene que
$$\begin{eqnarray}
\sum_{i\in I} \lVert T\phi_i\rVert^2 &=& \sum_{i\in I,k\in K} |\langle T\phi_i, \varphi_k\rangle|^2 \\&=& \sum_{i\in I,k\in K} |\langle \phi_i, T^*\varphi_k\rangle|^2 \\&=& \sum_{l,k\in K} |\langle \varphi_l, T^*\varphi_k\rangle|^2\\&=&\sum_{l,k\in K} |\langle T\varphi_l, \varphi_k\rangle|^2 \\&=& \sum_{l \in K} \lVert T\varphi_l\rVert^2,
\end{eqnarray}$$ by Parseval's identity. Suppose $T$ es una de Hilbert-Schmidt operador que
$$
T: \phi_j \mapsto \sum_{i\in I} a_{ij}\phi_i,
$$ for all $j\in I$. Luego de su Hilbert-Schmidt norma es
$$
\lVert T\rVert^2_{\text{HS}}=\sum_{j\in I} \lVert T\phi_j\rVert^2 = \sum_{i,j\in I} |\langle T\phi_j, \phi_i\rangle|^2= \sum_{i,j\in I} |a_{ij}|^2 <\infty.
$$ Now, let us define $$\xi(x,y) = \sum_{i,j\in I} a_{ij}\phi_i(x)\overline{\phi_j(y)}.$$ Since $\{\phi_i(x)\overline{\phi_j(y)}\}_{i,j\in I}$ forms an orthonormal subset (in fact basis) of $L_2([0,1]\times[0,1])$, it follows that $\xi \en L_2([0,1]\times[0,1])$. Podemos observar que
$$
\int_{[0,1]} \xi(x,y)\phi_j(y)dy = \sum_{i\in I} a_{ij}\phi_i(x)=T\phi_j(x),
$$as desired. Finally, for $B$ to admit Hilbert-Schmidt operator $\tau_B de dólares, es suficiente y es necesario que
$$
\lVert \tau_B\rVert^2_{\text{HS}}=\sum_{i,j\in I} |\langle \tau_B\phi_i, \phi_j\rangle|^2 = \sum_{i,j\in I} |B(\phi_i,\phi_j)|^2 <\infty,
$$ which is stronger than the original assumption $$|B(f,g)|\leq M\lVert f\rVert\lVert g\rVert.$$