$\begin{align}J&=\int_0^{\infty}\frac{x^4}{1+x^6}\,dx\\
&=\int_0^{\infty}\frac{2x^2-1}{3(x^4-x^2+1)}\,dx+\frac{1}{3}\int_0^{\infty}\frac{1}{1+x^2}\,dx\\
&=\int_0^{\infty}\frac{2x^2-1}{3(x^4-x^2+1)}\,dx+\frac{1}{3}\Big[\arctan x\Big]_0^{\infty}\\
&=\frac{1}{3}\int_0^{\infty}\frac{2x^2-1}{x^4-x^2+1}\,dx+\frac{1}{6}\pi
\end{align}$
Realizar el cambio de variable $y=\dfrac{1}{x}$,
$\begin{align}K&=\int_0^{\infty}\frac{2x^2-1}{x^4-x^2+1}\,dx\\
&=\int_0^{\infty}\frac{2-x^2}{x^4-x^2+1}\,dx
\end{align}$
Por lo tanto,
$\begin{align}2K&=\int_0^{\infty}\frac{(2x^2-1)+(2-x^2)}{x^4-x^2+1}\,dx\\
&=\int_0^{\infty}\frac{1+x^2}{x^4-x^2+1}\,dx\\
&=\int_{0}^{+\infty}\frac{\frac{1}{x^2}+1}{x^2-1+\frac{1}{x^2}}\,dx\\
&=\int_{0}^{+\infty}\frac{\frac{1}{x^2}+1}{\left(x-\frac{1}{x}\right)^2+1}\,dx
\end{align}$
Realizar el cambio de variable $y=x-\dfrac{1}{x}$,
$\begin{align}2K&=\int_{-\infty}^{+\infty}\frac{1}{1+x^2}\,dx\\
&=\Big[\arctan x\Big]_{-\infty}^{+\infty}\\
&=\pi
\end{align}$
Por lo tanto,
$\begin{align}K&=\frac{1}{2}\pi\end{align}$
Por lo tanto,
$\begin{align}J&=\frac{1}{3}K+\frac{1}{6}\pi\\
&=\frac{1}{3}\times \frac{1}{2}\pi++\frac{1}{6}\pi\\
&=\boxed{\frac{1}{3}\pi}
\end{align}$