Permita que el número de Fibonacci generalizado: $$\begin{cases} a_0=p_0 \\ a_1=p_1 \\ a_{n+2}=Aa_{n+1}+Ba_n \end{cases}$$ Prove that if for $ C, D> 0$: $ | a_ {n} | \ le CD ^ n$ then for $ R \ in (\ frac {-1 } {D}, \ frac {1} {D})$ the series is convergent. Then let $ f$ - the sum on the entire convergence interval $ f (x) = \ sum_ {n = 0} ^ {\ infty} a_n x ^ n $
Mi intento: $$\frac{1}{R}=\lim_{n\rightarrow =\infty}\sup |a_n|\le \lim_{n\rightarrow =\infty}\sup \sqrt[n]{CD^n} = D$ $ $$\frac{1}{R}=\lim_{n\rightarrow =\infty}\sup |a_n|\ge \lim_{n\rightarrow =\infty}\sup -\sqrt[n]{CD^n} = -D$$ So: $$R \in (-\frac{1}{D},\frac{1}{D})$$ However I don't know if this prove is good so I please about check.
Moreover I don't know how I can calculate $ f $ . ¿Me puedes ayudar?