He aquí un método más elemental para hallar la suma que da un resultado más general. Sea $\displaystyle f(n)=\sum^{n-1}_{r=1}(-1)^{r-1}\frac{r}{\binom{n}{r}}$ . Nos han pedido que encontremos $\displaystyle f(2n)$ . Tenga en cuenta que $\displaystyle \frac{1}{\binom{n+1}{k+1}}+\frac{1}{\binom{n+1}{k}}=\frac{n+2}{n+1}\frac{1}{\binom{n}{k}}$ . Utilizaremos esta identidad dos veces para telescopiar la suma.
$$f(n)=\sum^{n-1}_{r=0}(-1)^{r-1}\frac{r}{\binom{n}{r}}=\frac{n+1}{n+2}\sum^{n-1}_{r=0}\bigg((-1)^{r-1}\frac{r}{\binom{n+1}{r}}-(-1)^{r}\frac{r}{\binom{n+1}{r+1}}\bigg)$$$$=\frac{n+1}{n+2}\sum^{n-1}_{r=0}\bigg((-1)^{r-1}\frac{r}{\binom{n+1}{r}}-(-1)^{r}\frac{r+1}{\binom{n+1}{r+1}}+\frac{(-1)^r}{\binom{n+1}{r+1}}\bigg)=\frac{n+1}{n+2}\bigg((-1)^n\frac{n}{n+1}+\sum^{n}_{r=1}\frac{(-1)^{r-1}}{\binom{n+1}{r}}\bigg)$$$$=\frac{n+1}{n+2}\Bigg((-1)^n\frac{n}{n+1}+\frac{n+2}{n+3}\sum^{n}_{r=1}\bigg(\frac{(-1)^{r-1}}{\binom{n+2}{r}}-\frac{(-1)^r}{\binom{n+2}{r+1}}\bigg)\Bigg)=\frac{n+1}{n+2}\Bigg((-1)^n\frac{n}{n+1}+\frac{1-(-1)^n}{n+3}\Bigg)$$
$$\implies f(n)=\frac{n}{n+2}(-1)^n+\frac{n+1}{(n+2)(n+3)}\big(1-(-1)^n\big)=\left \{ \begin{aligned} &\ \ \ \ \ \frac{n}{n+2}, && \text{if}\ n \text{ is even} \\ &-\frac{n-1}{n+3}, && \text{if } n \text{ is odd} \end{aligned} \right.$$ $$\therefore f(2k+1)=-\frac{k}{k+2}\text{ and }f(2k)=\frac{k}{k+1}\text{, as desired.}$$ $\blacksquare$