La transformada inversa de Laplace puede ser calculado mediante la fórmula estándar (ver esta página), que establece que si $F$ es la transformada de Laplace de $f$, $f$ puede ser recuperado a través de la integral de línea $$f(t)=\frac{1}{2\pi i}\lim_{T\to\infty}\int_{\gamma-iT}^{\gamma+iT} e^{tz}F(z)dz$$ where $\gamma$ is suitably chosen. In our case, $F(z)=e^{z^2/2}$. This function is smooth over the whole complex plane, so (as explained on the wikipedia page) we may take $\gamma=0$, and the line integral is along the imaginary axis from $-iT$ to $iT$. Define a parameterisation of this path in the natural way i.e. $z:[-T,T]\rightarrow\mathbb{C}$ maps $s$ to $is$. Substituting $z(s)=is$ into the line integral gives $$\int_{-iT}^{iT} e^{tz}F(z)dz=\int_{-T}^{T}e^{ist}e^{-s^2/2}z'(s)ds=i\int_{-T}^{T}e^{ist}e^{-s^2/2}ds$$ Next, write $e^{ist}=\cos(st)+i\sin(st)$. Sine is an odd function so the sine term will evaluate to zero. We are therefore left with $$f(t)=\frac{1}{2\pi i}i\int_{-\infty}^{\infty}\cos(ts)e^{-s^2/2}ds=\frac{2i}{2\pi i}\int_0^\infty \cos(\sqrt2 tx)e^{-x^2}\sqrt2dx$$ where we have used the fact that cosine is an even function, and the substitution $x=s/\sqrt2$. This integral is well known - see this question/answer. Evaluating the integral, we finally get $$f(t)=\frac{2i}{2\pi i}\sqrt2 \frac{\sqrt\pi}{2}e^{-2t^2/4}=\frac{1}{\sqrt{2\pi}}e^{-t^2/2}$$