$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large%
\sum_{n\ =\ 1}^{\infty}{243 \over 16\pars{n\pi}^{5}}\,\sin\pars{2n\pi \over 3}}
={243 \over 16\pi^{5}}\,\Im\sum_{n\ =\ 1}^{\infty}
{\pars{\expo{2\pi\ic/3}}^{n} \over n^{5}}
={243 \over 16\pi^{5}}\,\color{#c00000}{\Im\Li{5}\pars{\expo{2\pi\ic/3}}}
\end{align}
donde $\ds{\Li{s}\pars{z}}$ es el PolyLogarithm Función .
Con Jonquiere La Inversión De La Fórmula
$\ds{\Li{n}\pars{\expo{2\pi\ic x}} + \pars{-1}^{n}\Li{n}\pars{\expo{-2\pi\ic x}}
=-\,{\pars{2\pi\ic}^{n} \over n!}\,\,{\rm B}_{n}\pars{x}}$ donde
$\ds{\,{\rm B}_{n}\pars{x}}$ es un
Bernoulli Polinomio tendremos:
\begin{align}
\color{#c00000}{\Im\Li{5}\pars{\expo{2\pi\ic/3}}}
&={\Li{5}\pars{\expo{2\pi\ic/3}} - \Li{5}\pars{\expo{-2\pi\ic/3}} \over 2\ic}
=-\pi\,{\pars{2\pi\ic}^{4} \over 5!}\,\,{\rm B}_{5}\pars{1 \over 3}
\\[5mm]&=\color{#c00000}{-\,{2\pi^{5} \over 15}\,\,{\rm B}_{5}\pars{1 \over 3}}
\end{align}
Tenga en cuenta que
$\ds{\,{\rm B}_{5}\pars{x}=
x^{5} - {5 \over 2}\,x^{4} + {5 \más de 3}\,x^{3} - {1 \over 6}\,x}$ tal que
$\ds{\color{#c00000}{\,{\rm B}_{5}\pars{1 \over 3} = -\,{5 \over 243}}}$.
\begin{align}&\color{#66f}{\large%
\sum_{n\ =\ 1}^{\infty}{243 \over 16\pars{n\pi}^{5}}\,\sin\pars{2n\pi \over 3}}
={243 \over 16\pi^{5}}\bracks{\pars{-\,{2\pi^{5} \over 15}}\pars{-\,{5 \over 243}}}
=\color{#66f}{\large{1 \over 24}}
\end{align}