$ \newcommand { \braces }[1]{ \left\lbrace\ ,{#1}\, \right\rbrace } \newcommand { \bracks }[1]{ \left\lbrack\ ,{#1}\, \right\rbrack } \newcommand { \dd }{ \mathrm {d}} \newcommand { \ds }[1]{ \displaystyle {#1}} \newcommand { \expo }[1]{\, \mathrm {e}^{#1}\,} \newcommand { \ic }{ \mathrm {i}} \newcommand { \mc }[1]{ \mathcal {#1}} \newcommand { \mrm }[1]{ \mathrm {#1}} \newcommand { \pars }[1]{ \left (\,{#1}\, \right )} \newcommand { \partiald }[3][]{ \frac { \partial ^{#1} #2}{ \partial #3^{#1}}} \newcommand { \root }[2][]{\, \sqrt [#1]{\,{#2}\,}\,} \newcommand { \totald }[3][]{ \frac { \mathrm {d}^{#1} #2}{ \mathrm {d} #3^{#1}}} \newcommand { \verts }[1]{ \left\vert\ ,{#1}\, \right\vert }$ \begin {alinear} \color {#f00}{ \pars { \begin {array}{rr}0 & 1 \\ -1 & 0 \end {\i1}{\b1}{\b1}{\b1}{\b1}{\b1}}Más} {\b1}de la familia.{\b}} \ic ^{n} \pars { \begin {array}{rr}0 & - \ic \\ \ic & 0 \end {\i1}{\b1}{\b1}{\b1}{\b1}{\b1}}{\b1}{\b1}{\b1}}Aquí.{\b}{\b1} \color {#f00}{ \left\ { \begin {array}{rcl} \ds { \pars {-1}^{n/2} \pars { \begin {array}{rr}1 y 0 \\ 0 & 1 \end y \mbox Si \ds {n}\ \mbox es incluso \\ [2mm] \ds { \pars {-1}^{ \pars {n - 1}/2} \pars { \begin {array}{rr}0 & 1 \\ -1 & 0 \end y \mbox Si \ds {n}\ \mbox impar \end {\i1}{\b1} \right. } \end {alinear}
porque $ \ds { \sigma_ {y} \equiv \pars { \begin {array}{rr}0 & - \ic \\ \ic & 0 \end {array}}}$ satisface $ \ds { \sigma_ {y}^{2} = \sigma_ {y}}$ .