12 votos

Evaluar la integral$\int_0^\infty \frac{dx}{\sqrt{(x^3+a^3)(x^3+b^3)}}$

Esta integral se parece mucho a una integral elíptica, pero con cubos en lugar de cuadrados:

$$I(a,b)=\int_0^\infty \frac{dx}{\sqrt{(x^3+a^3)(x^3+b^3)}}$$

Consideremos $a,b>0$ por ahora.

$$I(a,a)=\int_0^\infty \frac{dx}{x^3+a^3}=\frac{2 \pi}{3 \sqrt{3} a^2}$$

He obtenido la serie general de la solución de la siguiente manera. Elija $a,b$ tal que $a \geq b$, entonces:

$$I(a,b)=\frac{1}{a^2} \int_0^\infty \frac{dt}{\sqrt{(t^3+1)(t^3+b^3/a^3)}}=\frac{1}{a^2} I \left(1, \frac{b}{a} \right)$$

$$\frac{b^3}{a^3}=p, \qquad I \left(1, \frac{b}{a} \right)=I_1(p)$$

$$I_1(p)=\int_0^\infty\frac{dt}{\sqrt{(t^3+1)(t^3+p)}}=2 \frac{d}{dp} J(p)$$

$$J(p)=\int_0^\infty\sqrt{\frac{t^3+p}{t^3+1}}dt=\int_0^\infty\sqrt{1+\frac{p-1}{t^3+1}}dt=$$

$$|p-1| \leq 1$$

$$=\sum_{k=0}^\infty \left( \begin{array}( 1/2 \\ ~k \end{array} \right) (p-1)^k \int_0^\infty \frac{dt}{(t^3+1)^k}$$

Ahora esta es la parte más problemática. La primera integral de esta serie diverge. Sin embargo, es una constante en $p$, así que si podemos diferenciar, formalmente desaparece:

$$I_1(p)=2 \sum_{k=1}^\infty \left( \begin{array}( 1/2 \\ ~k \end{array} \right) k (p-1)^{k-1} \int_0^\infty \frac{dt}{(t^3+1)^k}$$

Ahora, cada integrante de esta serie converge. El integtals puede ser calculada usando la función Beta, si sustituimos: $$t^3=\frac{1}{u}-1$$

Finalmente, podemos reescribir:

$$I_1(p)=\frac{\Gamma (1/3)}{3 \sqrt{\pi}} \sum_{k=1}^\infty \frac{k^2}{k!^2} \Gamma \left(k- \frac{1}{2}\right) \Gamma \left(k- \frac{1}{3}\right) (1-p)^{k-1}$$

O, usando el símbolo de Pochhammer:

$$I_1(p)=\frac{2 \pi}{3 \sqrt{3}} \sum_{k=0}^\infty \frac{(k+1)^2}{(k+1)!^2} \left(\frac{1}{2}\right)_k \left(\frac{2}{3}\right)_k (1-p)^k$$

Mis preguntas son:

Es el método que he utilizado es válido (ver la problemática de la parte')? Cómo conseguir esta serie en una función Hipergeométrica forma?

Es allí cualquier 'aritmética-media geométrica", como los de transformación (Landen de la transformación), para esta integral? Cómo ir sobre la búsqueda?

Si el método que he utilizado es correcto, puede ser utilizado por cualquier integrante de la forma de ($m \geq 2$):

$$I_m(a,b)=\int_0^\infty \frac{dx}{\sqrt{(x^m+a^m)(x^m+b^m)}}$$

4voto

Martin Nicholson Puntos 657

Fue demostrado ya que $$ I_1(p)=\int_0^\infty \frac{dx}{\sqrt{(x^3+1)(x^3+p)}}=\frac{2 \pi}{3 \sqrt{3}} {_2F_1} \left(\frac{1}{2},\frac{2}{3};1;1-p \right). $$ Por la transformación 2.11(5) de Erdelyi, Más funciones trascendentes (put $z=\frac{1-\sqrt{p}}{1+\sqrt{p}}$) $$ {_2F_1} \left(\frac{1}{2},\frac{2}{3};1;1-p \right)=\left(\frac{2}{1+\sqrt{p}}\right)^{4/3}{_2F_1} \left(\frac{2}{3},\frac{2}{3};1;\left(\frac{1-\sqrt{p}}{1+\sqrt{p}}\right)^{2} \right). $$ Por Pfaff la transformación de la $$ {_2F_1} \left(\frac{2}{3},\frac{2}{3};1;\left(\frac{1-\sqrt{p}}{1+\sqrt{p}}\right)^{2} \right)=\left(\frac{(1+\sqrt{p})^2}{4\sqrt{p}}\right)^{2/3}{_2F_1} \left(\frac{1}{3},\frac{2}{3};1;\frac{(1-\sqrt{p})^2}{-4\sqrt{p}} \right). $$ Como resultado $$ I_1(p)=\frac{2 \pi}{3 \sqrt{3}p^{1/3}}{_2F_1} \left(\frac{1}{3},\frac{2}{3};1;\frac{(1-\sqrt{p})^2}{-4\sqrt{p}} \right). $$ Ahora vamos a usar una generalización de la AGM encontrado por Borwein y Borwein, Un Cúbicos Contraparte de Jacobi de la Identidad y de la junta general de accionistas, las Transacciones de la Sociedad Matemática Americana, Vol. 323, Nº 2, (1991), pp 691-701 (después de la corrección de algunos errores): $$ a_{n+1}=\frac{a_n+2b_n}{3} ,\quad b_{n+1}=\sqrt[3]{b_n\frac{a_n^2+a_nb_n+b_n^2}{3}},\quad a_0=1,\quad b_0=s, $$ $$ \quad AG_3(1,s)=\lim_{n\to\infty} a_n=\frac{1}{{_2F_1} \left(\frac{1}{3},\frac{2}{3};1;1-s^3 \right)}. $$ El uso de este obtenemos

\begin{align} I_1(p)=\frac{2 \pi}{3 \sqrt{3}~p^{1/3}\cdot AG_3\left(1,\left(\frac{1+\sqrt{p}}{2~\sqrt[4]{p}}\right)^{2/3}\right)}. \end{align}

2voto

Yuriy S Puntos 179

El uso de los consejos de @cansado en los comentarios, podemos escribir:

$$I_1(p)=\frac{2 \pi}{3 \sqrt{3}} \sum_{k=0}^\infty \frac{1}{k!^2} \left(\frac{1}{2}\right)_k \left(\frac{2}{3}\right)_k (1-p)^k=$$

$$=\frac{2 \pi}{3 \sqrt{3}} \sum_{k=0}^\infty \frac{1}{(1)_k} \left(\frac{1}{2}\right)_k \left(\frac{2}{3}\right)_k \frac{(1-p)^k}{k!}=\frac{2 \pi}{3 \sqrt{3}} {_2F_1} \left(\frac{1}{2},\frac{2}{3};1;1-p \right)$$

Así que esto es sólo la habitual función hipergeométrica de Gauss.

Esto responde a mi primera pregunta, pero tengo la esperanza de obtener una respuesta a mi segunda pregunta así.


Si hablamos de esta integral como un medio, es muy cerca de la Aritmética Media Geométrica y la Media Logarítmica:

$$M(a,b)=\frac{a}{\sqrt{{_2F_1} \left(\frac{1}{2},\frac{2}{3};1;1-\frac{b^3}{a^3} \right)}}$$

$$a \geq b$$

enter image description here

Os recuerdo que la junta general de accionistas puede ser escrita como:

$$\text{agm}(a,b)=\frac{a}{{_2F_1} \left(\frac{1}{2},\frac{1}{2};1;1-\frac{b^2}{a^2} \right)}$$

$$a \geq b$$

Y numéricamente tenemos:

$$M(a,b) \leq \text{agm}(a,b)$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X