De fondo.
Deje P0(y)=2y−3P0(y)=2y−3 y definir de forma recursiva Pn+1(y)=4y⋅P′n(y)+(5−4y)⋅Pn(y). I would like to know as many properties of Pn as I can. For example, it can be shown that each Pn has only real simple positive zeros and that Pn and Pn+1 strictly interlace for every n. It can also be shown that the recursive strict Turan Inequality is satisfied, for y>0, Tn(y):=Pn+1(y)2−Pn(y)⋅Pn+2(y)>0. Empirical evidence (Mathematica) indicates that Tn(y) is an increasing polynomial with only one real zero at 0. My goal is to find a good estimate of Tn(π) and show that Tn(y)>Tn(π) for y>π. In an effort to establish that goal it would be nice to find a generating function for the {Pn}.
Problema.
En un intento de encontrar la generación de la función que he cometido un terrible error, pero me parece que no puede encontrar lo que mi error. Por favor, muéstrame el error de mis caminos.
Definir el poder formal de la serie, f(y,t):=∞∑n=0Pn(y)n!tn. we see then that ft=ddtf(y,t)=∞∑n=1Pn(y)(n−1)!tn−1=∞∑n=0Pn+1(y)n!tn. Using the differential equation above we have, ∞∑n=0Pn+1(y)n!tn=∞∑n=04y⋅P′n(y)+(5−4y)⋅Pn(y)n!tn. So we arrive at ft=4y⋅fy+(5−4y)⋅f. A quick check verifies that f(y,t)=e5t+y. And so we have the generating function e5t+y=∞∑n=0Pn(y)n!tn, but this implies, differentiate with respect to y, that e5t+y=∞∑n=0P′n(y)n!tn, and so Pn(y)=P′n(y) for every n and y. How can that be? {Pn} es una secuencia de polinomios???
Yo estaba motivado para intentar generar las funciones de la lectura "Rainville - Funciones Especiales - Página 188" y las derivaciones para los polinomios de Hermite.