Si $\ \{x_n\}$ convergen a$x$: $$\lim_{n\to\infty} \frac{1}{n}\sum_{k=0}^{n} x_k =x.$$
Vamos a elegir un $\epsilon>0$, $\exists N_1\in \mathbb{N}$ tal que $\forall n\geq N_1$ tenemos $|x_n-x|<\epsilon/2.$
\begin{array}{} \displaystyle\frac{1}{n}\sum_{k=0}^{n} x_k-x &= \displaystyle \frac{x_1+x_2+...+x_n}{n}-x\\ &=\displaystyle \frac{x_1+x_2+...+x_n-nx}{n} \end{array} Permite tomar el valor absoluto: \begin{array}{} \left|\displaystyle\frac{1}{n}\sum_{k=0}^{n} x_k-x \right| & =\left|\displaystyle \frac{x_1+x_2+...+x_n-nx}{n} \right| \\ & =\left| \displaystyle\frac{(x_1-x)+(x_2-x)+...(x_n-x)}{n} \right| \\ & \leq \left| \displaystyle\frac{x_1-x}{n}\right|+...+\left|\displaystyle\frac{x_n-x}{n}\right| & by \ the \ triangle \ inequality.\\ & = \displaystyle\frac{1}{n}\sum_{k=0}^{N_1-1} |x_k-x| + \displaystyle\frac{1}{n}\sum_{k=N_1}^{n} |x_k-x| \\ & = \displaystyle\frac{1}{n}\sum_{k=0}^{N_1-1} |x_k-x| + \displaystyle\frac{\epsilon}{2n}(n-N_1) & (\forall n\geq N_1: |x_n-x|<\epsilon/2.)\\ &\leq \displaystyle\frac{1}{n}\sum_{k=0}^{N_1-1} |x_k-x| + \displaystyle\frac{\epsilon}{2} \end{array}
Tomando el límite de la primera suma, obtenemos : $$\lim_{n \to \infty}\displaystyle\frac{1}{n}\sum_{k=0}^{N_1-1} |x_k-x| = 0.$$
De ello se desprende que $\exists N_2 \in \mathbb{N}$ tal que $n\geq N_2$ tenemos : $$\displaystyle\frac{1}{n}\sum_{k=0}^{N_1-1} |x_k-x| < \displaystyle\frac{\epsilon}{2}.$$
Permite llevar a $N=\max\{N_1,N_2\}$ $\forall n\geq N$ $$\left|\displaystyle\frac{1}{n}\sum_{k=0}^{n} x_k-x \right| \leq \displaystyle\frac{\epsilon}{2} +\displaystyle\frac{\epsilon}{2} = \epsilon. $$