$\color{brown}{\textbf{Theoretic data.}}$
Es conocido que
$$I_n = \int\limits_0^{\large\frac\pi4} \bronceado^n x\,\mathrm dx
= \dfrac{\psi_0\left(\dfrac{n+3}4\right)-\psi_0\left(\dfrac{n+1}4\right)}4,\tag1$$
donde $\psi_0(z)$ es función digamma,
$$\psi_0(z) = -\int\limits_0^\infty\dfrac{e^{-zt}}{1-e^{-t}}\,dt\tag2$$
(ver también Wolfram Documentación).
Así
$$I_n = \frac14\int\limits_0^\infty\dfrac{1-e^{-\frac t2}}{1-e^{-t}}\,e^{\large-\frac {n+1}4t}\,dt = \frac18\int\limits_0^\infty\dfrac{e^{\large-\frac n4t}}{\cosh \dfrac t4}\,dt,$$
$$\color{green}{\mathbf{I_n = \frac12\int\limits_0^\infty\dfrac{e^{-nt}}{\cosh t}\,dt}}. \tag3$$
Teniendo en cuenta OP, también es conocido
$$I_0 = \frac\pi4,\quad I_1 = \frac12\ln2,\quad I_k+I_{k+2} = \dfrac1{k+1}.\tag4$$
$\color{brown}{\textbf{Summation of pairs.}}$
La aplicación inmediata de enfoque de la OP, es posible obtener
$$S_{20} = \sum\limits_{k=0}^{\infty}(I_kI_{k+1}+I_{k+1}I_{k+2})
= \sum\limits_{k=0}^{\infty}\dfrac{I_{k+1}}{k+1}
= \int\limits_0^{\large \frac\pi4}\sum\limits_{k=1}^{\infty}\dfrac{\bronceado^k
x}kdx
= -\int\limits_0^{\large \frac\pi4}\ln(1-\tan x)dx, $$
$$S_{20} = C - \frac\pi8\ln2\tag5$$
(ver también Wolfram Alpha),
donde C es el catalán es constante.
Entonces
$$\sum\limits_{k=0}^{\infty}I_k(I_{k+1}+I_{k+3})
= \sum\limits_{k=0}^{\infty}\dfrac1{k+2}I_k = \sum\limits_{k=0}^{\infty}\dfrac1{k+2}\left(\dfrac1{k+1}-I_{k+2}\right)$$
$ $ = \sum\limits_{k=0}^{\infty}\left(\dfrac1{k+1}-\dfrac1{k+2}\right)-\sum\limits_{k=0}^{\infty}\dfrac1{k+2}I_{k+2}
= 1+I_1-S_{20},$$
$$\color{green}{\boxed{\mathbf{\sum\limits_{k=0}^{\infty}(I_k I_{k+1}+I_k I_{k+3})= 1 + \frac{4+\pi}8\ln2-C}\approx 0.976\,733\,488.}}\tag6$$
$\color{brown}{\textbf{Integral presentation of product of external factors in the triples.}}$
El uso de $(3),$ uno puede escribir
$$I_k I_{k+2} = \dfrac14\int\limits_0^\infty\int\limits_0^\infty \dfrac{e^{-k(x+y)}e^{-2y}}{\cosh x \cosh y}\,dy\,dx
= \int\limits_0^\infty\int\limits_0^\infty \dfrac{e^{-(k+1)(x+y)}e^{4x}}{(1+e^{2x})(e^{2x+2y}+e^{2x})}\,dy\,dx.$$
Sustituciones
$$u=x+y,\quad t=e^{2x}$$
dar
$$I_k I_{k+2} = \dfrac12\int\limits_0^\infty e^{-(k+1)u} J_1(e^u)\,du,$$
donde
$$J_1(s) =\int\limits_1^{s^2}\dfrac{t}{(t+1)(t+s^2)}\,dt
= \int\limits_1^{s^2}\dfrac1{s^2-1}
\left(\dfrac {s^2}{t+s^2}-\dfrac{1}{t+1}\right)\,dt$$
$$ = \dfrac1{s^2-1}(s^2\ln(t+s^2)-\ln(t+1)\bigg|\phantom{\Big|}_1^{s^2}$$
$$= \dfrac{s^2\ln(2s^2) - (s^2+1)\ln(s^2+1) + \ln2}{s^2-1}
= \dfrac{(s^2+1)\ln2+2s^2\ln s - (s^2+1)\ln(s^2+1)}{s^2-1}$$
$$= \dfrac{(s^2-1)\ln(s) - (s^2+1)\ln\dfrac{s^2+1}{2}}{s^2-1}
= \ln(s) - \dfrac{s^2+1}{s^2-1}\ln\dfrac{s^2+1}{2}.$$
Así
$$\color{verde}{\mathbf{I_k I_{k+2}= \dfrac1{2(k+1)^2} -
\frac12\int\limits_0^\infty\,e^{-(k+1)u}\coth u\ln\cosh u\,du.}} \tag7$$
Las pruebas a través de la fórmula (1) se confirma la fórmula(7)
$\color{brown}{\textbf{Summation of the triples productions}}$
Teniendo en cuenta que
$$\sum\limits_{k=2}^\infty \dfrac{t^k}{k^2} = \operatorname{Li}_2(t) - t$$
(ver también Wolfram Alpha),
uno puede conseguir
$$\boxed{S_{30} = \sum\limits_{k=2}^\infty \dfrac{I_k}{k^2}
=\int\limits_0^{\large\frac\pi4}(\operatorname{Li}_2(\bronceado t)-\bronceado t)\, dt
\aprox 0.090\,057\,376} \tag8$$
(ver también Wolfram Alpha cálculos numéricos).
La segunda suma es
$$S_{31} = \sum\limits_{k=1}^\infty I_{k+1} \int\limits_0^\infty\,e^{-(k+1)u}\coth u\ln\cosh u\,du
= \sum\limits_{k=1}^\infty \int\limits_0^\infty\,\int\limits_0^\infty\,
e^{-(k+1)(u+v)}\dfrac{\coth u}{\cosh v}\ln\cosh u\dv\,du$$
$$ = \int\limits_0^\infty\,\int\limits_0^\infty\,
\dfrac{e^{-2(u+v)}}{1-e^{-(u+v)}} \dfrac{\coth u}{\cosh v}\ln\cosh u\dv\,du$$
$$ = \int\limits_0^\infty\,\int\limits_0^\infty\,
\dfrac{e^{-2u-3v}}{1-e^{-(u+v)}} \cdot \dfrac{\coth u}{1+e^{-2}}\ln\cosh u\dv\,du
= \int\limits_0^\infty J_2(e^{-u})\coth u\ln\cosh u\,du$$
donde
$$J_2(x) = \int\limits_0^1 \dfrac{x^2t^2\,dt}{(1-xt)(t^2+1)}
= \dfrac {x^2}{x^2+1}\int\limits_0^1 \left(\dfrac{1}{1-xt} - \dfrac{xt+1}{t^2+1}\right) \,dt$$
$$ = -\dfrac x{x^2+1}\left(\ln(1-xt) + \dfrac{x^2}2\ln(t^2+1) + x\arctan t\right)
\bigg|\phantom{\Big|}_0^1 = \dfrac18 \dfrac{2x}{x^2+1}
\left(-4\ln(1-x) - 2x^2\ln2 - \pi x\right).$$
Entonces
$$\color{green}{\boxed{\mathbf{S_{31} = \int\limits_0^\infty \dfrac{4e^{2u}\ln(1-e^{-u}) - \pi e^u -2\ln2}{8e^{3u}\sinh u}\ln\cosh u\,du}\approx 0.025\,054\,224}}\tag9$$
(ver también Wolfram Alpha cálculos numéricos)
$\color{brown}{\textbf{Final summations.}}$
$$\boxed{S_3 = \sum\limits_{k=1}^\infty I_k I_{k+1} I_{k+2} = \frac12(S_{30} - S_{31})\approx \frac12(0.090\,057\,376 - 0.025\,054\,224) = 0.032\,501\,576,}$$
$$\color{green}{\boxed{\phantom{\Bigg|}S=S_2+S_3\approx 0.976\,733\,488+0.032\,501\,576 = \color{brown}{\mathbf{1.009\,235\,064}.\quad}}}$$