$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\bbox[10px,#ffd]{P_{n}} & \equiv
\prod_{k = 2}^{n}{k^{3} - 1 \over k^{3} + 1} =
\prod_{k = 2}^{n}{\pars{k - 1}\pars{k - \expo{2\pi\ic/3}}
\pars{k - \expo{-2\pi\ic/3}} \over
{\pars{k + 1}\pars{k - \expo{\pi\ic/3}}
\pars{k - \expo{-\pi\ic/3}}}}
\\[5mm] & =
{\pars{n - 1}! \over \pars{n + 1}!/2}\prod_{k = 2}^{n}{\pars{k - \expo{2\pi\ic/3}}
\pars{k - \expo{-2\pi\ic/3}} \over
\pars{k - \expo{\pi\ic/3}}\pars{k - \expo{-\pi\ic/3}}}
\\[5mm] & =
{2 \over \pars{n + 1}n}\verts{\prod_{k = 2}^{n}
{\pars{k - \expo{2\pi\ic/3}} \over \pars{k - \expo{\pi\ic/3}}}}^{2}
\\[5mm] & =
{2 \over n\pars{n + 1}}\verts{\prod_{k = 2}^{n}
{\pars{k + 1/2 - \root{3}\ic/2} \over
\pars{k - 1/2 - \root{3}\ic/2}}}^{2}
\\[5mm] & =
{2 \over n\pars{n + 1}}
\verts{\pars{5/2 - \root{3}\ic/2}^{\overline{n - 1}} \over
\pars{3/2 - \root{3}\ic/2}^{\overline{n - 1}}}^{2}
\\[5mm] & =
{2 \over n\pars{n + 1}}
\verts{\Gamma\pars{n + 3/2 - \root{3}\ic/2}/\Gamma\pars{5/2 - \root{3}\ic/2} \over
\Gamma\pars{n + 1/2 - \root{3}\ic/2}/\Gamma\pars{3/2 - \root{3}\ic/2}}^{2}
\\[5mm] & =
{2 \over n\pars{n + 1}}\,\verts{\Gamma\pars{3/2 - \root{3}\ic/2} \over \Gamma\pars{5/2 - \root{3}\ic/2}}^{2}\
\verts{\pars{n + 1/2 - \root{3}\ic/2}! \over
\pars{n - 1/2 - \root{3}\ic/2}}^{2}
\\[8mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{2 \over n\pars{n + 1}}\
\overbrace{1 \over \verts{3/2 - \root{3}\ic/2}^{2}}^{\ds{=\ 1/3}}\
\times
\\[2mm] &
\verts{\root{2\pi}\pars{n + 1/2 - \root{3}\ic/2}^{n + 1 - \root{3}\ic/2} \expo{-n - 1/2 + \root{3}\ic/2} \over
\root{2\pi}\pars{n - 1/2 - \root{3}\ic/2}^{n - \root{3}\ic/2}
\expo{-n + 1/2 + \root{3}\ic/2}}^{2}
\\[8mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{2/3 \over n\pars{n + 1}}\
\verts{n^{n + 1 - \root{3}\ic/2}\bracks{1 + \pars{1/2 - \root{3}\ic/2}/n}^{n} \expo{- 1/2 + \root{3}\ic/2} \over
n^{n - \root{3}\ic/2}\bracks{1 - \pars{1/2 + \root{3}\ic/2}/n}^{n}
\expo{1/2 + \root{3}\ic/2}}^{2}
\\[5mm] & =
{2/3 \over n\pars{n + 1}}\,n^{2}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\Large\to}\,\,\,
\bbx{2 \over 3}
\end{align}