Tengo problemas para ver donde el $\frac{1}{2}$ proviene de la en $$\frac{df}{dz}=\frac{1}{2}\left ( \frac{\partial f}{\partial x}-i\frac{\partial f}{\partial y}\right )$$
Para un cambio de variables $z=x+iy$ hemos $$\frac{df}{dz}= \ \frac{\partial f}{\partial x}\frac{\partial x}{\partial z}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial z}$$ and $\frac{\partial x}{\partial z}=1$ and $\frac{\partial y}{\partial z}=-i$. Therefore we have the above but without the $\frac{1}{2}$. I've seen someone derive the correct expression by including the change of variables for $\overline{z}$ sin embargo no veo la manera de que sea necesario, se debe trabajar sin, derecho? No sé de qué me estoy perdiendo?