Su matriz de coeficientes es
$$
M =
\left(
\begin{array}{ccc}
0 & 2 & 1 \\
2 & 2 & 1 \\
4 & 4 & 0 \\
\end{array}
\right)
$$
que satisface (Cayley-Hamilton)
$$ M^3 - 2 M^2 - 12 M - 8I = 0 $$
$$ a_{n+3} = 2 a_{n+2} + 12 a_{n+1} + 8 a_n \; . $$
Usted también consigue
$$ b_{n+3} = 2 b_{n+2} + 12 b_{n+1} + 8 b_n \; , $$
$$ c_{n+3} = 2 c_{n+2} + 12 c_{n+1} + 8 c_n \; . $$
Si tomamos el vector columna
$$
x_n =
\left(
\begin{array}{c}
a_n \\
b_n \\
c_n \\
\end{array}
\right) \; ,
$$
nos encontramos con $x_{n+1} = M x_n \; ,$ $x_{n+2} = M x_{n+1} = M^2 x_n \; ,$ finalmente, $x_{n+3}= M x_{n+2} = M^3 x_n.$ Cayley Hamilton dice
$$ x_{n+3} = M^3 x_n = \left( 2M^2 + 12 M + 8 I \right)x_n = 2M^2 x_n + 12 M x_n + 8 I x_n = 2 x_{n+2} + 12 x_{n+1} + 8 x_n $$