¿Puede alguien ayudarme con este límite? Estoy trabajando en ello durante horas y no puedo resolverlo.
$$ \lim_{x\to 0} \left(\frac {\tan x }{x} \right)^{\frac{1}{x^2}}$$
Empecé a transformar a la forma $ \lim_{x\to 0} e^{ {\frac{\ln \left(\frac {\tan x}{x} \right)}{x^2}} }$ y aplicó la regla de l'Hopital (ya que la indeterminación $\frac00$ ), obteniendo:
$$ \lim_{x\to 0} \left( \frac{2x-\sin 2x }{2x^2\sin 2x} \right)$$
A partir de aquí, intento continuar con varias formas de sustituciones trigonométricas, aplicando la regla de l'Hopital una y otra vez, pero no tengo suerte. ¿Puede alguien ayudarme?