4 votos

Demuestre o pruebe que $\int_{-\infty}^{\infty}\frac{\sin(x)}{x} \mathrm{e}^{i \alpha x} \mathrm{d}x = \pi$

$$\int_{-\infty}^{\infty}\frac{\sin(x)}{x} \mathrm{e}^{i \alpha x} \mathrm{d}x = \pi$$ Esta integral en particular nos suena en nuestro departamento (Matemáticas). Ya ha sido resuelta y demostrada y sigue apareciendo en cada examen de análisis complejo de tercer año.

Una condición adicional es que $\alpha$ es real. Supongamos que $\alpha$ es 1, Matlab dice que la respuesta es $\pi$ pero no dice cómo. ¿Podría alguien mostrarme la prueba?

3voto

willw Puntos 1026

$\sin(x)/x$ es aproximadamente la transformada de Fourier de una función de caja, véase http://en.wikipedia.org/wiki/Rectangular_function#Fourier_transform_of_the_rectangular_function

Entonces, utilizando el teorema de la convolución, esta integral no es más que la convolución de una función de caja (de ancho $\pi$ y la altura $1$ ) con la constante $1$ que es el resultado.

1voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin {align} & \bbox [10px,#ffd]{ \int_ {- \infty }^{ \infty }{ \sin\pars {x} \over x} \expo { \ic\alpha x}\, \dd x} = \int_ {- \infty }^{ \infty } \bracks {% \half\int_ {-1}^{1} \expo {- \ic kx} \, \dd k} \expo { \ic\alpha x}\, \dd x \\ [5mm] = &\\N- \pi\int_ {-1}^{1} \dd k \int_ {- \infty }^{ \infty } \expo {- \ic\pars {k - \alpha }x} \,{ \dd x \over 2 \pi } = \pi\int_ {-1}^{1} \delta\pars {k - \alpha }\, \dd k = \pi\ , \Theta\pars {1 - \verts { \alpha }} \end {align} Sin embargo, cuando $\ds{\verts{\alpha} = 1}$ podemos calcularla directamente a partir de la integral inicial como $$ \int_{-\infty}^{\infty}{\sin\pars{x} \over x}\,\expo{\pm\ic x}\,\dd x= \int_{-\infty}^{\infty}{\sin\pars{2x} \over 2x}\,\dd x = {\pi \over 2} $$ Entonces, $$\color{#00f}{\large% \int_{-\infty}^{\infty}{\sin\pars{x} \over x}\expo{\ic\alpha x}\,\dd x =\left\lbrace% \begin{array}{ccl} 0 & \mbox{if} & \verts{\alpha} > 1 \\[2mm] \pi & \mbox{if} & \verts{\alpha} < 1 \\[2mm] {\pi \over 2} & \mbox{if} & \alpha = \pm 1 \end{array}\right.\,,\qquad\qquad\alpha\ \in\ {\mathbb R}} $$

0voto

fianchetto Puntos 186

Como $\dfrac{\sin x}{x}$ es incluso entonces $$ \int_{-\infty}^{\infty}\frac{\sin x}{x}\mathrm{e}^{iax}\,dx= \int_{-\infty}^{\infty}\frac{\sin x}{x}\cos ax\,dx= \int_{-\infty}^{\infty}\frac{\sin (a+1)x-\sin(a-1)x}{2x}\,dx. \tag{1} $$ Ahora para $b>0$ , $$ \int_{-\infty}^{\infty}\frac{\sin bx}{x}\,dx\,\,\stackrel{y=bx}=\,\, \int_{-\infty}^{\infty}\frac{\sin y}{y}\,dy, $$ mientras que para $b<0$ $$ \int_{-\infty}^{\infty}\frac{\sin bx}{x}\,dx=-\int_{-\infty}^{\infty}\frac{\sin x}{x}\,dx. $$ Por lo tanto, $(1)$ proporciona $$ \int_{-\infty}^{\infty}\frac{\sin x}{x}\mathrm{e}^{iax}\,dx=\frac{1}{2} \big(\sgn(a+1)-\sgn(a-1)\big) \int_{-\infty}^{\infty}\frac{\sin x}{x}\,dx=\frac{\pi}{2} \big(\sgn(a+1)-\sgn(a-1)\big). $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X