4 votos

¿Qué se puede decir acerca de un convexo combinación ortogonal de matrices?

Deje $A$ $B$ ser de dos matrices ortogonales (de orden $n\geqslant 2$) tales que

$$\det A=1 \qquad\qquad \det B=-1$$

Podemos decir que:

  1. no es $\lambda \in [0,1]$ tal que $\lambda A + (1-\lambda) B$ define un operador de proyección?
  2. no es $\lambda \in [0,1]$ tal que $\lambda A + (1-\lambda) B$ es un singular de la matriz?

Me preguntaba ¿por qué no podemos decir que toda matriz ortogonal es una matriz de proyección que se proyecta a $\mathbb{R^n}$ (de modo que la primera pregunta es contestada por $\lambda = 0$ o $\lambda = 1$)?

1voto

heptagon Puntos 1018

Como user251257 señala en el comentario, la declaración (2) es verdadera debido a que el factor determinante es continua. Aquí es un contraejemplo para (1). Vamos a tomar $$A=\begin{pmatrix}\sqrt{0.5}&-\sqrt{0.5}\\\sqrt{0.5}&\sqrt{0.5}\end{pmatrix},\,\,\, B=\begin{pmatrix}0&1\\1&0\end{pmatrix},$$ then $a, B$ are orthogonal and $\det a=1$, $\det B=-1$. Their convex combination is, with $\lambda\in[0,1]$, $$C(\lambda)=\begin{pmatrix}\lambda\sqrt{0.5}&-\lambda\sqrt{0.5}+1-\lambda\\\lambda\sqrt{0.5}+1-\lambda&\lambda\sqrt{0.5}\end{pmatrix}.$$ Clearly, $C(\lambda)$ cannot be the identity matrix, so it must be singular if it is a projector. We have $$\det C(\lambda)=0.5\lambda^2-(1-\lambda+\sqrt{0.5}\lambda)(1-\lambda-\sqrt{0.5}\lambda)=\lambda^2-(1-\lambda)^2=-1+2\lambda.$$ Therefore, $C(\lambda)$ can be a projector only if $\lambda=0.5$, but then $$C(0.5)=\begin{pmatrix}0.5\sqrt{0.5}&-0.5\sqrt{0.5}+0.5\\0.5\sqrt{0.5}+0.5&0.5\sqrt{0.5}\end{pmatrix},$$ and we can check that the $(1,1)$ entry of the square of the latter matrix is $1/4$, so $C(0.5)$ no es un proyector así.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X