$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}{\ln\pars{x} \over 1 + x^{4}}\,\dd x:\ {\large ?}}$
El siguiente método "evita" los cuatro polos de la integral original.
En cambio, sólo tenemos que considerar una $\color{#c00000}{\ds{\it\underline{\mbox{one pole-integral}}}}$ :
Tenga en cuenta que \begin {align}& \color {#c00000}{ \int_ {0}^{ \infty }{ \ln\pars {x} \over 1 + x^{4}} \, \dd x} = \int_ {0}^{ \infty }{ \ln\pars {x^{1/4}} \over 1 + x}\,{1 \over 4}\,x^{-3/4}\, \dd x ={1 \over 16} \int_ {0}^{ \infty }{x^{-3/4} \ln\pars {x} \over 1 + x}\, \dd x \\ [3mm]&={1 \over 16} \lim_ { \mu\ \to\ -3/4}\,\,\, \partiald {}{ \mu } \color {#00f}{% \int_ {0}^{ \infty }{x^{ \mu } \over 1 + x}\, \dd x} \tag {1} \end {align}
\begin {align} & \color {#00f}{ \int_ {0}^{ \infty }{x^{ \mu } \over 1 + x}\, \dd x} =2 \pi\ic\expo { \pi\mu\ic } - \int_ { \infty }^{0} {x^{ \mu } \expo {2 \pi\mu\ic } \over 1 + x}\, \dd x =2 \pi\ic\expo { \pi\mu\ic } + \expo {2 \pi\mu\ic } \color {#00f}{ \int_ {0}^{ \infty }{x^{ \mu } \over 1 + x}\, \dd x} \\ [3mm]& \imp\quad \color {#00f}{ \int_ {0}^{ \infty }{x^{ \mu } \over 1 + x}\, \dd x} ={2 \pi\ic\expo { \pi\mu\ic } \over 1 - \expo {2 \pi\mu\ic }} =- \pi\ ,{2 \ic \over \expo { \pi\mu\ic } - \expo {- \pi\mu\ic }} = \color {#00f}{-\,{ \pi \over \sin\pars { \pi\mu }}} \end {align}
Sustitución en $\pars{1}$ : \begin {align}& \color {#66f}{ \large\int_ {0}^{ \infty }{ \ln\pars {x} \over 1 + x^{4}} \, \dd x} ={1 \over 16} \bracks { \pi ^{2} \cot\pars { \pi\mu } \csc\pars { \pi\mu }}_{ \mu\ =\ -3/4} \,\,\,= \color {#66f}{ \large -\,{ \root {2} \over 16}\, \pi ^{2}} \approx -0.8724 \end {align}