Vamos
- $(\Omega,\mathcal A,\operatorname P)$ ser un espacio de probabilidad
- $\mathbb F=(\mathcal F)_{t\ge 0}$ ser una filtración en $(\Omega,\mathcal A)$
- $B=(B_t)_{t\ge 0}$ $\mathbb F$- adaptar el movimiento Browniano con respecto a $\mathbb F$
Deje $H=(H_t)_{t\ge 0}$ $\mathbb F$adaptados localmente delimitado y de la forma $$H_t(\omega)=\sum_{i=1}^nH_{t_{i-1}}(\omega)1_{(t_{i-1},t_i]}(t)\;\;\;\text{for all }\Omega\times[0,\infty)\;$$ for some $0=t_0<\ldots<t_n$. I absolutely don't get why $$\operatorname E\left[H_{t_{i-1}}^2\left(B_{t_i}-B_{t_{i-1}}\right)^2\right]=\operatorname E\left[H_{t_{i-1}}^2\right](t_i-t_{i-1})\;.\tag{1}$$ Clearly, $$\operatorname E\left[\left(B_{t_i}-B_{t_{i-1}}\right)^2\right]=t_i-t_{i-1}\tag{2}\;,$$ but that seems to imply that we need to have $$\operatorname E\left[H_{t_{i-1}}^2\left(B_{t_i}-B_{t_{i-1}}\right)^2\right]=\operatorname E\left[H_{t_{i-1}}^2\right]\operatorname E\left[\left(B_{t_i}-B_{t_{i-1}}\right)^2\right]\tag{3}\;.$$ Why does $(3)$ sostenga?