Hice un experimento con mi secuencia de comandos de Python para encontrar un número que se puede dividir la $n^4$ en este intervalo ($n^2-n$, $n^2$). Vi la forma de prim factores de los números en este ($n^2-n$, $n^2$) intervalo, pero no me había alguna idea para la corrección de la misma. ¿Alguien puede ayudar con alguna idea de iniciar a prueba de que si $n^2-n < k < n^2$ entonces $k$ no pueden dividirse $n^4$.
Respuestas
¿Demasiados anuncios?Deje $0<i<n$ y supongamos que $n^2-i$ divide $n^4$. A continuación, $$ n^4=(n^2-i)(n^2+j)=n^4+(j-i)n^2-i\,j\implica i\,j=(j-i)n^2 $$ para algunos entero $j$. Si $j\le i$, luego $$ n^4=(n^2-i)(n^2+j)\le(n^2-i)(n^2+i)=n^4-i^2. $$ Por lo tanto, $j>i$. Desde $i<n$, se deduce que el $j>(j-i)n\ge n$. Por otra parte $$ n\le j=\frac{i\,n^2}{n^2-i}<\frac{i\,n^2}{n^2-n}=\frac{i\,n}{n-1}\implica i>n-1, $$ una contradicción con el hecho de que $i<n$.
Respuesta a la Pregunta
Deje $k=n^2-a$. Desde $n^2-a\mid n^4$y $$ \frac{n^4}{n^2}=n^2+un+\frac{a^2}{n^2} $$ debemos tener $d=\frac{a^2}{n^2-a}\in\mathbb{Z}$. Sin embargo, desde la $\color{#C00}{1\le a\le n-1}$ e $\frac{a^2}{n^2-a}$ es el aumento en el $a$, $$ 0\lt\overbrace{\ \frac1{n^2-1}\ }^{\large\color{#C00}{a=1}}\le d\le\overbrace{\frac{n^2-2n+1}{n^2-n+1}}^{\large\color{#C00}{a=n-1}}\lt1 $$ lo cual es imposible porque no hay ningún número entero entre $0$ e $1$.
La delimitación de la Mayor Factor de $\boldsymbol{n^4}$ menos de $\boldsymbol{n^2}$
Caso: $\boldsymbol{d=1}$
Desde $n^2=a^2+a$, tenemos $n-1\lt a\lt n$, lo cual es imposible.
Caso: $\boldsymbol{d=2}$
Desde $n^2=\frac{a(a+2)}2$, $\sqrt2\,n-1\lt a\lt\sqrt2\,n$. De hecho, $2n^2+1=(a+1)^2$. Eso significa que $$ \left(\frac{a+1}n\right)^2=2+\frac1{n^2}\lt\left(\sqrt2+\frac1{2n^2}\right)^2 $$ Que las fuerzas de $\frac{a+1}n$ a ser una continuación de la fracción sobreestimación de $\sqrt2$ . Esto le da a la primera pares de $(n,a)$ a $$ \{(0,0),(2,2),(12,16),(70,98),(408,576),(2378,3362),(13860,19600)\} $$ La recursividad para $n_k$ es $n_k=6n_{k-1}-n_{k-2}$ e $a_k=\left\lfloor\sqrt2\,n\right\rfloor$.
En cualquier caso, hemos
El mayor factor de $n^4$ menos de $n^2$ debe ser menor que $n^2-\sqrt2\,n+1$ y hay un número infinito de $n$ , de modo que el mayor factor de $n^4$ menos de $n^2$ es mayor que $n^2-\sqrt2\,n$.
Los mejores ejemplos vienen de $n=2xy,$ donde $x,y>0$ son enteros y $x^2 - 2 y^2 = \pm 1 \; . \;$ En estos casos se obtiene un factor de $m$ de $n^4$ cerca de $n^2 - n \sqrt 2 \; . \; $ Cuando $x^2 - 2 y^2 = 1,$ obtenemos $m = n^2 - 2 x^2.$ Cuando $x^2 - 2 y^2 = -1,$ obtenemos $m = n^2 - 4 y^2.$
jagy@phobeusjunior:~$ ./mse
n: 2 = 2 m: 2 n^2 - m: 2 = 2
n: 3 = 3 m: 3 n^2 - m: 6 = 2 3
n: 4 = 2^2 m: 8 n^2 - m: 8 = 2^3
n: 6 = 2 3 m: 27 n^2 - m: 9 = 3^2
n: 10 = 2 5 m: 80 n^2 - m: 20 = 2^2 5
n: 12 = 2^2 3 m: 128 n^2 - m: 16 = 2^4
n: 24 = 2^3 3 m: 512 n^2 - m: 64 = 2^6
n: 30 = 2 3 5 m: 810 n^2 - m: 90 = 2 3^2 5
n: 60 = 2^2 3 5 m: 3456 n^2 - m: 144 = 2^4 3^2
n: 70 = 2 5 7 m: 4802 n^2 - m: 98 = 2 7^2
n: 84 = 2^2 3 7 m: 6912 n^2 - m: 144 = 2^4 3^2
n: 140 = 2^2 5 7 m: 19208 n^2 - m: 392 = 2^3 7^2
n: 168 = 2^3 3 7 m: 27783 n^2 - m: 441 = 3^2 7^2
n: 180 = 2^2 3^2 5 m: 32000 n^2 - m: 400 = 2^4 5^2
n: 408 = 2^3 3 17 m: 165888 n^2 - m: 576 = 2^6 3^2
n: 594 = 2 3^3 11 m: 351384 n^2 - m: 1452 = 2^2 3 11^2
n: 816 = 2^4 3 17 m: 663552 n^2 - m: 2304 = 2^8 3^2
n: 1170 = 2 3^2 5 13 m: 1366875 n^2 - m: 2025 = 3^4 5^2
n: 2378 = 2 29 41 m: 5651522 n^2 - m: 3362 = 2 41^2
n: 3230 = 2 5 17 19 m: 10425680 n^2 - m: 7220 = 2^2 5 19^2
n: 4756 = 2^2 29 41 m: 22606088 n^2 - m: 13448 = 2^3 41^2
n: 5880 = 2^3 3 5 7^2 m: 34560000 n^2 - m: 14400 = 2^6 3^2 5^2
n: 13860 = 2^2 3^2 5 7 11 m: 192080000 n^2 - m: 19600 = 2^4 5^2 7^2
n: 16296 = 2^3 3 7 97 m: 265531392 n^2 - m: 28224 = 2^6 3^2 7^2
n: 27720 = 2^3 3^2 5 7 11 m: 768320000 n^2 - m: 78400 = 2^6 5^2 7^2
n: 42672 = 2^4 3 7 127 m: 1820786688 n^2 - m: 112896 = 2^8 3^2 7^2
n: 57960 = 2^3 3^2 5 7 23 m: 3359232000 n^2 - m: 129600 = 2^6 3^4 5^2
n: 58206 = 2 3 89 109 m: 3387795864 n^2 - m: 142572 = 2^2 3 109^2
n: 80782 = 2 13^2 239 m: 6525617282 n^2 - m: 114242 = 2 239^2