$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{k = 1}^{N}{n + k - 1 \choose k}:\ {\large ?}}$
El binomio $\ds{{n + k - 1 \choose k}}$ es distinto de cero siempre que $\ds{0\ \leq\ k\ \leq\ n + k - 1\ \imp\ k \geq 0\,,\ n \geq 1}$ . A partir de ahora, supondremos que se cumplen esas condiciones.
\begin{align}&\color{#66f}{\large\sum_{k = 1}^{N}{n + k - 1 \choose k}} =\sum_{k = 1}^{N}\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + k - 1} \over z^{k + 1}} \,{\dd z \over 2\pi\ic} \\[2mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z}\sum_{k = 1}^{N} \pars{1 + z \over z}^{k}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z} {1 + z \over z}{\bracks{\pars{1 + z}/z}^{N} - 1 \over \pars{1 + z}/z - 1}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z} \bracks{{\pars{1 + z}^{N} \over z^{N}} - 1}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + N} \over z^{N + 1}} \,{\dd z \over 2\pi\ic} -\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}\,{\dd z \over 2\pi\ic} =\color{#66f}{\large{N + n \choose N} - 1} \end{align}