Con esta respuesta voy a mostrar un método indirecto para el resultado deseado de la integral de la $~\int\limits_0^1\frac{\ln(1-x)}{1+x}dx~$,
y indirectos quiere decir aquí: Es utilizado $~\text{Li}_2\left(\frac{1}{2}\right)~$ sin saber que es de valor, solo como un catalizador.
Primero una fórmula general. No es difícil de encontrar, que formalmente se tiene:
$$-\frac{d}{dx}(x+z)^y \sum\limits_{k=1}^\infty\frac{\left(\frac{x+z}{a+z}\right)^k}{k+y} = \frac{(x+z)^y}{x-a}$$
Con la integración a $x$ y utilizando la serie de Taylor para $~y~$ todo $~0~$ obtenemos:
$$\frac{1}{n!}\int\frac{(\ln(x+z))^n}{x-a}dx = \sum\limits_{k=0}^n (-1)^{n-k+1}\frac{(\ln(x+z))^k}{k!}\text{Li}_{n-k+1}\left(\frac{x+z}{a+z}\right) + C$$
Primero usamos $~(n;z;a):=(1;1;1)~$ :
$\displaystyle\int\limits_0^1\frac{\ln(1-x)}{1+x}dx = -\int\limits_{-1}^0\frac{\ln(1+x)}{1-x}dx =$
$\displaystyle = -\text{Li}_2\left(\frac{x+1}{2}\right)|_{-1}^0 + \ln(x+1)\text{Li}_1\left(\frac{x+1}{2}\right)|_{-1}^0 = -\text{Li}_2\left(\frac{1}{2}\right) $
Nuestro siguiente paso es transformar la integral mediante la integración parcial :
$\displaystyle\int\limits_0^1\frac{\ln(1-x)}{1+x}dx = (\ln(1-x))(\ln(1+x) - \ln 2)|_0^1 + \int\limits_0^1\frac{\ln(1+x) - \ln 2}{1-x}dx = $
$\displaystyle = 0 + 2\int\limits_0^{1/2}\frac{\ln(1+2x) - \ln 2}{1-2x}dx = -\int\limits_0^{1/2}\frac{\ln(x+1/2)}{x-1/2}dx$
Ahora vamos a utilizar $~(n;z;a):=(1;\frac{1}{2};\frac{1}{2})~$ e $~\text{Li}_1\left(\frac{1}{2}\right)=\ln 2~$ :
$\displaystyle -\int\limits_0^{1/2}\frac{\ln(x+1/2)}{x-1/2}dx = -\text{Li}_2\left(x+\frac{1}{2}\right)|_0^{1/2} + \ln\left(x+\frac{1}{2}\right) \text{Li}_1\left(x+\frac{1}{2}\right)|_0^{1/2}$
$\displaystyle = -\frac{\pi^2}{6} + \text{Li}_2\left(\frac{1}{2}\right) + (\ln 2)^2 \enspace\enspace$ , que es, como se observó antes, el mismo como $~\displaystyle -\text{Li}_2\left(\frac{1}{2}\right)~$ .
La comparación de ambos resultados que se obtienen los deseos de la fórmula.
Nota: $~$ Aquí vemos muy bien que la integración parcial conduce a la segunda representación del resultado, y ambas representaciones tienen como base común el (amarillo), con la fórmula general.
Sugerencia:
$$\frac{1}{n!}\int\frac{(\ln(x+z))^n}{(x-a)^{m+1}}dx =\\ =\frac{(-1)^m}{m!(a+z)^m}\sum\limits_{k=0}^n (-1)^{n-k+1}\frac{(\ln(x+z))^k}{k!}\sum\limits_{j=0}^m\begin{bmatrix}m~\\j~\end{bmatrix}\text{Li}_{n-k+1-j}\left(\frac{x+z}{a+z}\right) + C$$
para $~m\in\mathbb{N}_0~$ y con
los números de Stirling de primera especie $\begin{bmatrix}n~\\k~\end{bmatrix}~$ definido por $~\displaystyle\sum\limits_{k=0}^n\begin{bmatrix}n~\\k~\end{bmatrix}x^k:=\prod\limits_{k=0}^{n-1}(x+k)~$
Un simple ejemplo: $\enspace\displaystyle\int\limits_0^1\frac{\ln(1-x)}{(1+x)^3}dx = \displaystyle -\int\limits_{-1}^0\frac{\ln(x+1)}{(x-1)^3}dx =-\frac{1+\ln 2}{8}$