\begin{equation}
D_\mu \psi^A = \partial_\mu \psi^A - \frac i 2 \omega_\mu{}^{IJ}(\mathcal J_{IJ})^A{}_B \, \psi^B\;,
\end{equation}
donde $\mathcal J_{IJ}\equiv - \frac i 4 [\gamma_I, \gamma_J]$. O podemos simplemente escribir
\begin{eqnarray}
D_\mu \psi^A &=&\partial_\mu\psi^A - \frac 1 8 \omega_\mu{}^{IJ}[\gamma_I,\gamma_J]^A{}_B\, \psi^B\;,\\
&=& \partial_\mu\psi^A - \frac 1 4 \omega_\mu{}^{IJ}(\gamma_I,\gamma_J)^A{}_B\, \psi^B\;.
\end{eqnarray}
\begin{eqnarray}
\delta_\omega(D_\mu \psi^A ) &=&- \frac 1 4 \delta(\omega_\mu{}^{IJ})(\gamma_I,\gamma_J)^A{}_B\, \psi^B\;,\\
&\equiv& - \delta(\omega_\mu{}^{IJ})^A{}_B\, \psi^B\;,
\end{eqnarray}
también, ya que el uso de la representación real de $\gamma$'s (En esta tesis es el uso de $\{\gamma_I,\gamma_J\}=+2\eta_{IJ}$$\eta=diag(-1,1,1,1)$ )
\begin{equation}
\delta_\omega(\overline{D_\mu \psi_A} ) = - \delta(\omega_\mu{}^{IJ})^B{}_A\,\overline{ \psi_B}\;.
\end{equation}
En la notación abreviada escribimos
\begin{eqnarray}
\delta_\omega \, D\psi &=& -\delta\omega \,\psi \;,\\
\delta_\omega \,\overline {D\psi} &=& - \overline {\psi}\,\delta\omega \;
\end{eqnarray}
Tenga en cuenta que para ver $\omega$ en Clifford base tratamos de
\begin{eqnarray}
\omega= \frac 1 4 \omega_{IJ}\gamma^I \gamma^J ,\; \omega \wedge \omega &=& \frac 1 {16} \omega_{IJ} \wedge \omega_{KL} \gamma^I < \gamma^J,\gamma^K> \gamma^L\;,\\
&=& \frac 1 {4} \omega_{IK} \wedge \omega^K{}_{L} \gamma^I \gamma^L\;.\\
F = \mathrm{d} \omega+ \omega \wedge \omega &=& \frac 1 4 \mathrm{d}\omega_{IJ}\gamma^I \gamma^J + \frac 1 {4} \omega_{IK} \wedge \omega^K{}_{L} \gamma^I \gamma^L\;,\\
&=&\frac 1 4 \Big[ \mathrm{d}\omega_{IJ}+ \omega_{IK} \wedge \omega^K{}_{J} \Big] \gamma^I \gamma^J \equiv \frac 1 4 F_{IJ} \gamma^I \gamma^J\;.
\end{eqnarray}
Que la consistencia de la a $F$ en la tesis.
\begin{eqnarray}
S &\sim& \int\Big( \overline \psi_A (\star e e e)^A{}_B (D\psi)^B + (\overline{D\psi})_A (\star eee)^A{}_B \psi^B \Big)\;,\\
\delta_\omega S &\sim& \int \Big( \overline \psi_A (\star e e e)^A{}_B (-\delta \omega\,\psi)^B + (-\overline{\psi}\delta \omega)_A (\star eee)^A{}_B \psi^B \Big)\;,\\
&=&\int - \overline \psi_A (\star e e e)^A{}_B \delta \omega^B{}_C\,\psi^C -\overline{\psi}_C\delta \omega^C{}_A (\star eee)^A{}_B \psi^B \;,\\
&=& \int - \psi^C \overline \psi_A (\star e e e)^A{}_B \delta \omega^B{}_C\,- (\star eee)^A{}_B \psi^B \overline{\psi}_C\delta \omega^C{}_A\;,\\
(&\equiv& \int - \psi^C \otimes \overline \psi_A (\star e e e)^A{}_B \delta \omega^B{}_C\,- (\star eee)^A{}_B \psi^B \otimes\overline{\psi}_C\delta \omega^C{}_A)\;,\\
&=& \int - \psi \overline \psi (\star e e e) \delta \omega\,- (\star eee)\psi \overline{\psi}\delta \omega\;,\\
&=& -\int \Big\{\psi \overline \psi ,(\star e e e) \Big\}\delta \omega\,
\end{eqnarray}