$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\lim_{n \to \infty}\pars{n\int_{0}^{1}{x^{n} \over
x^{2} + 2019}\,\dd x}}\,\,\,\stackrel{x\ \mapsto\ 1 - x}{=}\,\,\,
\lim_{n \to \infty}\bracks{n\int_{0}^{1}{\pars{1 - x}^{n} \over
x^{2} -2x + 2020}\,\dd x}
\\[5mm] = &\
\lim_{n \to \infty}\bracks{n\int_{0}^{1}{\expo{n\ln\pars{1 - x}} \over
x^{2} -2x + 2020}\,\dd x}
\\[5mm] = &\
\lim_{n \to \infty}\pars{n\int_{0}^{\infty}{\expo{-nx} \over
0^{2} -2 \times 0 + 2020}\,\dd x}\qquad\pars{\text{Laplace's Method}}
\\[5mm] = & \bbx{1 \over 2020} \approx 4.9505 \times 10^{-4}
\end{align}
Laplace del Método.