4 votos

Cómo calcular la derivada de$x^x$ usando la definición

Quiero probar que$\displaystyle\lim_{h\to 0}\frac{(x+h)^{x+h}-x^x}{h}=x^x(\ln(x)+1).$

Si escribo$x^x$ como$e^{x\ln(x)}$, obtengo:$\displaystyle\lim_{h\to0}\frac{e^{(x+h)\ln(x+h)}-e^{x\ln(x)}}{h}$ pero luego estoy atascado. ¿Cuáles son los siguientes pasos? Gracias por adelantado.

4voto

Paramanand Singh Puntos 13338

Aquí hay una evaluación simple del derivado. \begin{align} f'(x) &= \lim_{h \to 0}\frac{f(x + h) - f(x)}{h}\notag\\ &= \lim_{h \to 0}\frac{(x + h)^{x + h} - x^{x}}{h}\notag\\ &= \lim_{h \to 0}\frac{\exp\{(x + h)\log(x + h)\} - \exp(x\log x)}{h}\notag\\ &= \exp(x\log x)\lim_{h \to 0}\frac{\exp\{(x + h)\log(x + h) - x\log x\} - 1}{h}\notag\\ &= x^{x}\lim_{h \to 0}\frac{\exp\{(x + h)\log(x + h) - x\log x\} - 1}{(x + h)\log(x + h) - x\log x}\cdot\frac{(x + h)\log(x + h) - x\log x}{h}\notag\\ &= x^{x}\lim_{t \to 0}\frac{e^{t} - 1}{t}\cdot\lim_{h \to 0}\frac{(x + h)\log(x + h) - x\log x}{h}\notag\\ &= x^{x}\cdot 1\cdot\lim_{h \to 0}\frac{(x + h)\log(x + h) - x\log(x + h) + x\log(x + h) - x\log x}{h}\notag\\ &= x^{x}\lim_{h \to 0}\dfrac{h\log(x + h) + x\log\left(1 + \dfrac{h}{x}\right)}{h}\notag\\ &= x^{x}\lim_{h \to 0}\left\{\log(x + h) + \dfrac{\log\left(1 + \dfrac{h}{x}\right)}{\dfrac{h}{x}}\right\}\notag\\ &= x^{x}\left\{\log x + \lim_{v \to 0}\frac{\log(1 + v)}{v}\right\}\notag\\ &= x^{x}(\log x + 1)\notag \end {align} En lo anterior, hemos utilizado las sustituciones$$t = (x + h)\log(x + h) - x\log x, v = h/x$$ so that both $ t, v$ tend to $ 0$ as $ h \ a 0$. Also the following standard limits are used $$\lim_{x \to 0}\frac{e^{x} - 1}{x} = 1,\,\lim_{x \to 0}\frac{\log(1 + x)}{x} = 1$$ Note that without the use of these standard limits it is not possible get derivatives from first principles for any function of type $ a (x) ^ {b (x)} $.

3voto

numbermaniac Puntos 18

PS

PS

PS

PS

Eso es lo lejos que puedo llegar sin usar reglas en cadena o similares. ¿Alguien puede ayudarme a concluir?

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X