Estoy llegó a través de la noción Rees Congruence
de semigroups. J. Howie define como ρI=(I×I)∪1S wherein I is an ideal of semigroup S satisfying a certain property. Then, we turn to Rees Homomorphism
as a homomorphism ϕ:S\T where kerϕ is a Rees congruence. I am puzzled about how such that kernel could be treated as ρI for some ideals I of S.
In fact, what would that ideal be taken? Of course, I know that the kernel is a congruence on S y cada una de congruencia puede ser un núcleo de un semigroups homomorphism. Gracias por hacer de mí un poco de luz.