4 votos

Resto y división larga

He estado pensando en esto. Digamos que tomamos 7 dividido por 3, sabemos que el resto es 1. Sin embargo, si dejamos que x=7 y x-4=3, y tomamos x/(x-4), después de realizar la división larga el resto es 4. ¿Por qué no es 1?

2voto

lhf Puntos 83572

Porque los cocientes son diferentes:

$ 7 = 2 \cdot 3 + 1 $

$ x = 1 \cdot (x-4) + 4 $

Cuando $x=7$ obtenemos

$ 7 = 1 \cdot 3 + 4 $

lo cual es correcto, por supuesto.

2voto

Saketh Malyala Puntos 118

Si alguien te entregara $x$ y $x-4$ ¿Por qué asumes que son $7$ y $3$ ?

En general, sabemos que $\displaystyle \frac{x}{x-4}=1+\frac{4}{x-4}$ .

Para $x=7$ es lo mismo que $\displaystyle \frac{7}{7-4}=1+\frac{4}{7-4}$ Como cualquier otra cosa arbitraria $x$ .

Sin embargo, sucede que $\displaystyle 1+\frac{4}{7-4}$ puede reescribirse como $\displaystyle 2+\frac{1}{7-4}$ .

El resto del polinomio sigue siendo $4$ .

0voto

fleablood Puntos 5913

Aviso:

$7=4*3+(-5) $

$7=3*3+(-2) $

$7=2*3+1$

$7=1*3+4$

$7=0*3+7$

$7=-1*3+10$

etc. Entonces, ¿cuál se califica como "el" resto? ¿Por qué es $1$ ? ¿Por qué no? $4$ , $10$ o $-2$ ?

Pues bien, como el resto está definido para ser al menos $0$ pero estrictamente menor que el divisor.

El 1 es "el" resto. El resto son congruencias. Y hay un número infinito de ellas.

Así que $\frac x {x-4}= 1 + \frac 4 {x-4} $ . O en otras palabras $x=1*(x-4)+4$ .

Pero es $4$ ¿"El" resto? ¿O es $4$ ¿sólo una congruencia?

El depende de si $4 < x-4$ o no. Si $x=7$ entonces $4> x-4$ y $4$ no es "el" resto. Es una congruencia.

En particular, se trata de $7=1*3+4$ .

... que es $7=1*3+3+1$ que es $7=(1+1)*3+1$ que es $7=2*3+1$

Nota: también tenemos: $x = 2*(x-4)+(4-(x-4))=2*(x-4)+(8-x) $ .

Si utilizamos que expresión, entonces el resto es $8-x$ que es $1$ para $x=7$ .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X