ADVERTENCIA: Entrante de la pared de las matemáticas.
Deje $\mathcal{I}$ denotar el valor de la integral definida,
$$\begin{align}
\mathcal{I}
&:=\int_{0}^{1}\mathrm{d}x\,\sqrt{x^{2}-4x+3}\arcsin{\left(x\right)}.\\
\end{align}$$
Para nuestros propósitos aquí podemos definir la inversa de la función seno de un argumento real, a través de la habitual representación integral
$$\arcsin{\left(z\right)}:=\int_{0}^{z}\mathrm{d}x\,\frac{1}{\sqrt{1-x^{2}}};~~~\small{-1\le z\le1}.$$
La integral de la definición de $\arcsin$ es de especial utilidad para la obtención de los siguientes trigonométricas inversas de identidad:
$$\forall z\in\left[0,1\right]:\arcsin{\left(1-2z^{2}\right)}=\frac{\pi}{2}-2\arcsin{\left(z\right)}.$$
Del mismo modo, en el seno hiperbólico inverso de la función de un argumento real, puede ser definido a través de la representación integral
$$\operatorname{arsinh}{\left(z\right)}:=\int_{0}^{z}\mathrm{d}x\,\frac{1}{\sqrt{1+x^{2}}};~~~\small{z\in\mathbb{R}},$$
y puede ser verificada a través de la diferenciación que el seno hiperbólico inverso puede ser expresada en la forma logarítmica
$$\operatorname{arsinh}{\left(z\right)}=\ln{\left(z+\sqrt{1+z^{2}}\right)};~~~\small{z\in\mathbb{R}}.$$
Volviendo ahora a la tarea principal de la evaluación de $\mathcal{I}$,
$$\begin{align}
\mathcal{I}
&=\int_{0}^{1}\mathrm{d}x\,\sqrt{x^{2}-4x+3}\arcsin{\left(x\right)}\\
&=\int_{0}^{1}\mathrm{d}x\,\sqrt{\left(3-x\right)\left(1-x\right)}\arcsin{\left(x\right)}\\
&=\int_{0}^{1}\mathrm{d}x\,\sqrt{\left(2+x\right)x}\arcsin{\left(1-x\right)};~~~\small{\left[x\mapsto1-x\right]}\\
&=4\int_{0}^{\frac12}\mathrm{d}x\,\sqrt{x\left(1+x\right)}\arcsin{\left(1-2x\right)};~~~\small{\left[x\mapsto2x\right]}\\
&=8\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(1-2x^{2}\right)};~~~\small{\left[x\mapsto x^{2}\right]}\\
&=8\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\left[\frac{\pi}{2}-2\arcsin{\left(x\right)}\right]\\
&=4\pi\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\pi\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{x^{2}\left(4+4x^{2}\right)}{\sqrt{1+x^{2}}}-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\pi\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{x^{2}\left(3+4x^{2}\right)}{\sqrt{1+x^{2}}}+\pi\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{x^{2}}{\sqrt{1+x^{2}}}\\
&~~~~~-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\pi\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\mathrm{d}}{\mathrm{d}x}\left[x^{3}\sqrt{1+x^{2}}\right]+\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2x^{2}+1-1}{\sqrt{1+x^{2}}}\\
&~~~~~-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{\pi}{2}\cdot\frac{\sqrt{3}}{2}\\
&~~~~~+\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2x^{2}+1}{\sqrt{1+x^{2}}}-\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{1}{\sqrt{1+x^{2}}}\\
&~~~~~-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{4}+\frac{\pi}{2}\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\mathrm{d}}{\mathrm{d}x}\left[x\sqrt{1+x^{2}}\right]-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}\\
&~~~~~-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{4}+\frac{\pi}{2}\cdot\frac{\sqrt{3}}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}\\
&~~~~~-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}.\\
\end{align}$$
Definir las funciones auxiliares $f:\left[-1,1\right]\rightarrow\mathbb{R}_{>0}$ e $g:\left[-1,1\right]\rightarrow\mathbb{R}_{\ge0}$ a través de las respectivas expresiones,
$$f{\left(x\right)}:=2\sqrt{1+x^{2}}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]$$
y
$$g{\left(x\right)}:=4x^{2}\sqrt{1+x^{2}}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right].$$
Se obtiene la siguiente expresión para la derivada de $f$ a $x\in\left(-1,1\right)$:
$$\begin{align}
f^{\prime}{\left(x\right)}
&=\frac{\mathrm{d}}{\mathrm{d}x}\bigg{[}2\sqrt{1+x^{2}}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\bigg{]}\\
&=\frac{\mathrm{d}}{\mathrm{d}x}\left[2\sqrt{1+x^{2}}\right]\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&~~~~~+2\sqrt{1+x^{2}}\frac{\mathrm{d}}{\mathrm{d}x}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&=\frac{2x}{\sqrt{1+x^{2}}}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&~~~~~+2\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{2x\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}+\frac{2x^{2}}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}\\
&~~~~~+\frac{2+2x^{2}}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}\\
&=\frac{2x\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}+\frac{2}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}+\frac{4x^{2}}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}.\\
\end{align}$$
De manera similar, también obtenemos la siguiente expresión para la derivada de $g$ a $x\in\left(-1,1\right)$:
$$\begin{align}
g^{\prime}{\left(x\right)}
&=\frac{\mathrm{d}}{\mathrm{d}x}\bigg{[}4x^{2}\sqrt{1+x^{2}}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\bigg{]}\\
&=\frac{\mathrm{d}}{\mathrm{d}x}\left[4x^{2}\sqrt{1+x^{2}}\right]\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&~~~~~+4x^{2}\sqrt{1+x^{2}}\frac{\mathrm{d}}{\mathrm{d}x}\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&=\left[\left(8x\sqrt{1+x^{2}}\right)+4x^{2}\left(\frac{2x}{2\sqrt{1+x^{2}}}\right)\right]\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&~~~~~+4x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=2x\left[6\sqrt{1+x^{2}}-\frac{2}{\sqrt{1+x^{2}}}\right]\left[\sqrt{1-x^{2}}+x\arcsin{\left(x\right)}\right]\\
&~~~~~+4x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=2x\left[6\sqrt{1+x^{2}}-\frac{2}{\sqrt{1+x^{2}}}\right]\sqrt{1-x^{2}}\\
&~~~~~+2x\left[6\sqrt{1+x^{2}}-\frac{2}{\sqrt{1+x^{2}}}\right]x\arcsin{\left(x\right)}\\
&~~~~~+4x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=2x\left[\frac{2\left(2+3x^{2}\right)\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}\right]-\frac{4x^{2}}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}+16x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}.\\
\end{align}$$
Volviendo a la evaluación de las $\mathcal{I}$,
$$\begin{align}
\mathcal{I}
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-16\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,x^{2}\sqrt{1+x^{2}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,g^{\prime}{\left(x\right)}\\
&~~~~~+\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,2x\left[\frac{2\left(2+3x^{2}\right)\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}\right]-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{4x^{2}}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,g^{\prime}{\left(x\right)}\\
&~~~~~+\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2x\left(4+6x^{2}\right)\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,f^{\prime}{\left(x\right)}\\
&~~~~~+\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2x\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}+\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2}{\sqrt{1+x^{2}}}\arcsin{\left(x\right)}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,g^{\prime}{\left(x\right)}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,f^{\prime}{\left(x\right)}\\
&~~~~~+\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2x\left(5+6x^{2}\right)\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}}+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}\\
&~~~~~-\left[g{\left(\frac{1}{\sqrt{2}}\right)}-g{\left(0\right)}\right]-\left[f{\left(\frac{1}{\sqrt{2}}\right)}-f{\left(0\right)}\right]\\
&~~~~~+\int_{0}^{\frac12}\mathrm{d}y\,\frac{\left(5+6y\right)\sqrt{1-y}}{\sqrt{1+y}};~~~\small{\left[x=\sqrt{y}\right]}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]\\
&~~~~~-\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]+2\\
&~~~~~+\int_{0}^{\frac12}\mathrm{d}y\,\frac{\left(5+6y\right)\left(1-y\right)}{\sqrt{1-y^{2}}}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=2+\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-2\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]\\
&~~~~~+\int_{0}^{\frac12}\mathrm{d}y\,\frac{5+y-6y^{2}}{\sqrt{1-y^{2}}}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=2+\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-2\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]\\
&~~~~~+\int_{0}^{\frac12}\mathrm{d}y\,\frac{y}{\sqrt{1-y^{2}}}+\int_{0}^{\frac12}\mathrm{d}y\,\frac{3-6y^{2}}{\sqrt{1-y^{2}}}+\int_{0}^{\frac12}\mathrm{d}y\,\frac{2}{\sqrt{1-y^{2}}}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=2+\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-2\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]\\
&~~~~~+\int_{0}^{\frac{1}{4}}\mathrm{d}t\,\frac{1}{2\sqrt{1-t}};~~~\small{\left[y=\sqrt{t}\right]}\\
&~~~~~+\frac{3\sqrt{3}}{4}+2\arcsin{\left(\frac12\right)}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=2+\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-2\sqrt{3}\left[1+\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\right]\\
&~~~~~-\frac{\sqrt{3}}{2}+1+\frac{3\sqrt{3}}{4}+\frac{\pi}{3}\\
&~~~~~+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=3-\frac{7\sqrt{3}}{4}+\frac{\pi}{3}-\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}.\\
\end{align}$$
Deje $\mathcal{J}$ denotar el valor de la integral definida,
$$\begin{align}
\mathcal{J}
&:=\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}.\\
\end{align}$$
La integración por partes y la aplicación de una cierta sustitución de Euler, nos encontramos con
$$\begin{align}
\mathcal{J}
&=\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2\arcsin{\left(x\right)}}{\sqrt{1+x^{2}}}\\
&=2\arcsin{\left(\frac{1}{\sqrt{2}}\right)}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{2\operatorname{arsinh}{\left(x\right)}}{\sqrt{1-x^{2}}};~~~\small{I.B.P.s}\\
&=\frac{\pi}{2}\ln{\left(\frac{1}{\sqrt{2}}+\sqrt{1+\frac12}\right)}-2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\ln{\left(x+\sqrt{1+x^{2}}\right)}}{\sqrt{1-x^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\ln{\left(\frac{1}{x+\sqrt{1+x^{2}}}\right)}}{\sqrt{1-x^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+2\int_{0}^{\frac{1}{\sqrt{2}}}\mathrm{d}x\,\frac{\ln{\left(-x+\sqrt{1+x^{2}}\right)}}{\sqrt{1-x^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~+2\int_{1}^{-\frac{1}{\sqrt{2}}+\sqrt{\frac32}}\mathrm{d}y\,\frac{\left(-1\right)\left(1+y^{2}\right)}{2y^{2}}\cdot\frac{\ln{\left(y\right)}}{\sqrt{1-\left(\frac{1-y^{2}}{2y}\right)^{2}}};~~~\small{\left[\sqrt{1+x^{2}}=x+y\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{\frac{\sqrt{3}-1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{2\left(1+y^{2}\right)\ln{\left(y\right)}}{y\sqrt{4y^{2}-\left(1-y^{2}\right)^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{\frac{\sqrt{3}-1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{2\left(1+y^{2}\right)\ln{\left(y\right)}}{y\sqrt{-1+6y^{2}-y^{4}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~+\int_{\frac{\sqrt{3}-1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{2\ln{\left(y\right)}}{y\sqrt{-1+6y^{2}-y^{4}}}+\int_{\frac{\sqrt{3}-1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{2y^{2}\ln{\left(y\right)}}{y\sqrt{-1+6y^{2}-y^{4}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~+\int_{\frac{\sqrt{2}}{\sqrt{3}-1}}^{1}\mathrm{d}t\,\frac{\left(-t^{-2}\right)2\ln{\left(\frac{1}{t}\right)}}{t^{-1}\sqrt{-1+6t^{-2}-t^{-4}}};~~~\small{\left[y=\frac{1}{t}\right]}\\
&~~~~~+\int_{\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)^{2}}^{1}\mathrm{d}u\,\frac{\ln{\left(\sqrt{u}\right)}}{\sqrt{-1+6u-u^{2}}};~~~\small{\left[y=\sqrt{u}\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~-\int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}}\mathrm{d}t\,\frac{2t\ln{\left(t\right)}}{\sqrt{-t^{4}+6t^{2}-1}}\\
&~~~~~+\int_{2-\sqrt{3}}^{1}\mathrm{d}u\,\frac{\ln{\left(u\right)}}{2\sqrt{-1+6u-u^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~-\int_{1}^{2+\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(u\right)}}{2\sqrt{-u^{2}+6u-1}};~~~\small{\left[t=\sqrt{u}\right]}\\
&~~~~~+\int_{2-\sqrt{3}}^{1}\mathrm{d}u\,\frac{\ln{\left(u\right)}}{2\sqrt{-1+6u-u^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{2-\sqrt{3}}^{1}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{2\sqrt{8-\left(x-3\right)^{2}}}-\int_{1}^{2+\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{2\sqrt{8-\left(x-3\right)^{2}}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{2-\sqrt{3}}^{1}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{\sqrt{\left(3+2\sqrt{2}-x\right)\left(x-3+2\sqrt{2}\right)}}\\
&~~~~~-\frac12\int_{1}^{2+\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{\sqrt{\left(3+2\sqrt{2}-x\right)\left(x-3+2\sqrt{2}\right)}},\\
\end{align}$$
y luego,
$$\begin{align}
\mathcal{J}
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{2-\sqrt{3}}^{1}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{\sqrt{\left(3+2\sqrt{2}-x\right)\left(x-3+2\sqrt{2}\right)}}\\
&~~~~~-\frac12\int_{1}^{2+\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(x\right)}}{\sqrt{\left(3+2\sqrt{2}-x\right)\left(x-3+2\sqrt{2}\right)}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{3+2\sqrt{2}-2+\sqrt{3}}{2-\sqrt{3}-3+2\sqrt{2}}}^{\frac{3+2\sqrt{2}-1}{1-3+2\sqrt{2}}}\mathrm{d}y\,\frac{\left(-1\right)\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}}\\
&~~~~~-\frac12\int_{\frac{3+2\sqrt{2}-1}{1-3+2\sqrt{2}}}^{\frac{3+2\sqrt{2}-2-\sqrt{3}}{2+\sqrt{3}-3+2\sqrt{2}}}\mathrm{d}y\,\frac{\left(-1\right)\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}};~~~\small{\left[\frac{3+2\sqrt{2}-x}{x-3+2\sqrt{2}}=y\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{1+\sqrt{2}}{-1+\sqrt{2}}}^{\frac{1+2\sqrt{2}+\sqrt{3}}{-1+2\sqrt{2}-\sqrt{3}}}\mathrm{d}y\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}}\\
&~~~~~-\frac12\int_{\frac{1+2\sqrt{2}-\sqrt{3}}{-1+2\sqrt{2}+\sqrt{3}}}^{\frac{1+\sqrt{2}}{-1+\sqrt{2}}}\mathrm{d}y\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\left(1+\sqrt{2}\right)^{2}}^{\left(\sqrt{6}+\sqrt{3}+\sqrt{2}+2\right)^{2}}\mathrm{d}y\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}}\\
&~~~~~-\frac12\int_{\left(\sqrt{6}+\sqrt{3}-\sqrt{2}-2\right)^{2}}^{\left(1+\sqrt{2}\right)^{2}}\mathrm{d}y\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)y}{1+y}\right)}}{\left(1+y\right)\sqrt{y}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{1+\sqrt{2}}^{\sqrt{6}+\sqrt{3}+\sqrt{2}+2}\mathrm{d}t\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)t^{2}}{1+t^{2}}\right)}}{\left(1+t^{2}\right)}\\
&~~~~~-\int_{\sqrt{6}+\sqrt{3}-\sqrt{2}-2}^{1+\sqrt{2}}\mathrm{d}t\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)t^{2}}{1+t^{2}}\right)}}{\left(1+t^{2}\right)};~~~\small{\left[y=t^{2}\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{\tan{\left(\frac{3\pi}{8}\right)}}^{\tan{\left(\frac{11\pi}{24}\right)}}\mathrm{d}t\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)t^{2}}{1+t^{2}}\right)}}{1+t^{2}}\\
&~~~~~-\int_{\tan{\left(\frac{5\pi}{24}\right)}}^{\tan{\left(\frac{3\pi}{8}\right)}}\mathrm{d}t\,\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)t^{2}}{1+t^{2}}\right)}}{1+t^{2}}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\int_{\frac{3\pi}{4}}^{\frac{11\pi}{12}}\mathrm{d}\varphi\,\frac{\sec^{2}{\left(\frac{\varphi}{2}\right)}}{2}\cdot\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\tan^{2}{\left(\frac{\varphi}{2}\right)}}{1+\tan^{2}{\left(\frac{\varphi}{2}\right)}}\right)}}{1+\tan^{2}{\left(\frac{\varphi}{2}\right)}}\\
&~~~~~-\int_{\frac{5\pi}{12}}^{\frac{3\pi}{4}}\mathrm{d}\varphi\,\frac{\sec^{2}{\left(\frac{\varphi}{2}\right)}}{2}\cdot\frac{\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\tan^{2}{\left(\frac{\varphi}{2}\right)}}{1+\tan^{2}{\left(\frac{\varphi}{2}\right)}}\right)}}{1+\tan^{2}{\left(\frac{\varphi}{2}\right)}};~~~\small{\left[t=\tan{\left(\frac{\varphi}{2}\right)}\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{3\pi}{4}}^{\frac{11\pi}{12}}\mathrm{d}\varphi\,\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\tan^{2}{\left(\frac{\varphi}{2}\right)}}{\sec^{2}{\left(\frac{\varphi}{2}\right)}}\right)}\\
&~~~~~-\frac12\int_{\frac{5\pi}{12}}^{\frac{3\pi}{4}}\mathrm{d}\varphi\,\ln{\left(\frac{\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\tan^{2}{\left(\frac{\varphi}{2}\right)}}{\sec^{2}{\left(\frac{\varphi}{2}\right)}}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{3\pi}{4}}^{\frac{11\pi}{12}}\mathrm{d}\varphi\,\ln{\left(3+2\sqrt{2}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{\frac{5\pi}{12}}^{\frac{3\pi}{4}}\mathrm{d}\varphi\,\ln{\left(3+2\sqrt{2}\cos{\left(\varphi\right)}\right)},\\
\end{align}$$
y luego, después de la configuración de $\alpha:=\arcsin{\left(\frac{2\sqrt{2}}{3}\right)}\in\left(0,\frac{\pi}{2}\right)$,
$$\begin{align}
\mathcal{J}
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{3\pi}{4}}^{\frac{11\pi}{12}}\mathrm{d}\varphi\,\ln{\left(3+2\sqrt{2}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{\frac{5\pi}{12}}^{\frac{3\pi}{4}}\mathrm{d}\varphi\,\ln{\left(3+2\sqrt{2}\cos{\left(\varphi\right)}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}+\frac12\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(3-2\sqrt{2}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{\frac{\pi}{4}}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(3-2\sqrt{2}\cos{\left(\varphi\right)}\right)};~~~\small{\left[\varphi\mapsto\pi-\varphi\right]}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}\\
&~~~~~+\frac12\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(3\right)}+\frac12\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(1-\frac{2\sqrt{2}}{3}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{\frac{\pi}{4}}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(3\right)}-\frac12\int_{\frac{\pi}{4}}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\frac{2\sqrt{2}}{3}\cos{\left(\varphi\right)}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\int_{0}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(1-\frac{2\sqrt{2}}{3}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\frac{2\sqrt{2}}{3}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\frac{2\sqrt{2}}{3}\cos{\left(\varphi\right)}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\int_{0}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}.\\
\end{align}$$
El resto de los logarítmica de las integrales pueden ser evaluados en términos de Clausen funciones utilizando la siguiente fórmula de integración, que vale para cualquier $\left(\alpha,\vartheta\right)\in\left(0,\frac{\pi}{2}\right)\times\mathbb{R}$:
$$\begin{align}
\int_{0}^{\theta}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}
&=\operatorname{Cl}_{2}{\left(2\theta+2\omega\right)}-\operatorname{Cl}_{2}{\left(2\theta\right)}-\operatorname{Cl}_{2}{\left(2\omega\right)}\\
&~~~~~-\theta\ln{\left(\sec^{2}{\left(\frac{\alpha}{2}\right)}\right)}-\omega\ln{\left(\tan^{2}{\left(\frac{\alpha}{2}\right)}\right)}\\
\end{align}$$
donde
$$\omega:=\arctan{\left(\frac{\tan{\left(\frac{\alpha}{2}\right)}\sin{\left(\vartheta\right)}}{1-\tan{\left(\frac{\alpha}{2}\right)}\cos{\left(\vartheta\right)}}\right)}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right).$$
Recordemos que el Clausen función puede ser definida por la real argumentos a través de la representación integral,
$$\operatorname{Cl}_{2}{\left(\theta\right)}:=-\int_{0}^{\theta}\mathrm{d}\varphi\,\ln{\left(\left|2\sin{\left(\frac{\varphi}{2}\right)}\right|\right)};~~~\small{\theta\in\mathbb{R}}.$$
Habiendo obtenido las expresiones explícitas para cada una de las integrales que comprenden $\mathcal{J}$, un poco algebraicas codo-grasa de los rendimientos de un simplificado en gran medida de valor final:
$$\begin{align}
\mathcal{J}
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\int_{0}^{\frac{\pi}{4}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}\\
&~~~~~-\frac12\int_{0}^{\frac{7\pi}{12}}\mathrm{d}\varphi\,\ln{\left(1-\sin{\left(\alpha\right)}\cos{\left(\varphi\right)}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\operatorname{Cl}_{2}{\left(\pi\right)}-2\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}-\frac{\pi}{4}\ln{\left(\sec^{2}{\left(\frac{\alpha}{2}\right)}\right)}-\frac{\pi}{4}\ln{\left(\tan^{2}{\left(\frac{\alpha}{2}\right)}\right)}\\
&~~~~~-\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{6}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}+\frac{\pi}{24}\ln{\left(\sec^{2}{\left(\frac{\alpha}{2}\right)}\right)}+\frac{\pi}{12}\ln{\left(\tan^{2}{\left(\frac{\alpha}{2}\right)}\right)}\\
&~~~~~-\frac12\operatorname{Cl}_{2}{\left(\frac{3\pi}{2}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{7\pi}{6}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}+\frac{7\pi}{24}\ln{\left(\sec^{2}{\left(\frac{\alpha}{2}\right)}\right)}+\frac{\pi}{12}\ln{\left(\tan^{2}{\left(\frac{\alpha}{2}\right)}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\frac{\pi}{12}\ln{\left(\sec^{2}{\left(\frac{\alpha}{2}\right)}\right)}-\frac{\pi}{12}\ln{\left(\tan^{2}{\left(\frac{\alpha}{2}\right)}\right)}\\
&~~~~~+\frac12\operatorname{Cl}_{2}{\left(\frac{7\pi}{6}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{6}\right)}+\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}-2\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}\\
&=\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}-\frac{\pi\ln{\left(3\right)}}{12}\\
&~~~~~+\frac{\pi}{12}\ln{\left(\frac32\right)}-\frac{\pi}{12}\ln{\left(\frac12\right)}\\
&~~~~~-\frac12\operatorname{Cl}_{2}{\left(\frac{5\pi}{6}\right)}+\frac12\operatorname{Cl}_{2}{\left(\frac{\pi}{6}\right)}+\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}-2\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}\\
&=\frac54\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}-2C+\frac{\pi}{2}\ln{\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}.\\
\end{align}$$
Por fin(!), llegamos al resultado deseado:
$$\begin{align}
\mathcal{I}
&=3-\frac{7\sqrt{3}}{4}+\frac{\pi}{3}+\frac{\sqrt{3}\,\pi}{2}-\frac{\pi}{2}\operatorname{arsinh}{\left(\frac{1}{\sqrt{2}}\right)}-2\sqrt{3}\arcsin{\left(\frac{1}{\sqrt{2}}\right)}+\mathcal{J}\\
&=3-\frac{7\sqrt{3}}{4}+\frac{\pi}{3}-2C+\frac54\operatorname{Cl}_{2}{\left(\frac{\pi}{3}\right)}.\\
\end{align}$$