4 votos

Lógica proposicional el problema de una conversación a cuatro personas que mienten o dicen la verdad

Obviamente, esto es elemental, pero no puede averiguar. Estoy tomando un curso denominado la Lógica y la Introducción al Análisis del siguiente semestre y quería hacer un poco de lectura de antemano, sino de averiguar qué tan profundo es el supuesto de hecho es, miré a través de un examen anterior de papel. Todo lo demás es bastante fácil, afectando principalmente básicos de la lógica proposicional. Pero esta fue la primera pregunta y estoy perplejo.

Considere la siguiente conversación de cuatro personas:

$A : $ "$B$ siempre se encuentra"

$B : $ "$C$ es una verdad-teller"

$C : $ "$A$ dijo la verdad"

$D : $ "Ninguno de $A, B$ $C$ es una verdad-teller"

$B : $ "Tanto en $A$ $C$ dicen mentiras"

Cómo muchos están hablando con la verdad en la conversación?

Las opciones son: Ninguno, Uno, Dos, Tres y Cuatro.

Cómo se podría ir sobre la abstracción de esto?

EDITAR:

Disculpas a todos editado la última declaración de la $B$. Terrible error por mí. Lo siento.

4voto

Shabaz Puntos 403

Normalmente para este tipo de problemas se espera que asumir que cada persona constantemente miente o dice la verdad. A continuación, puede simplemente asumir que uno es un tipo específico y a ver a dónde conduce. Por desgracia, las tres primeras declaraciones no pueden ser asignados a un conjunto coherente de valores de verdad. Si Una mentira,B es verdadera, y así es C, por lo que Una debe decir la verdad, que contradice nuestra suposición. Si dice la verdad, B mentiras, así que C se encuentra, por lo que Una mentira.

1voto

WillO Puntos 1777

La pregunta es ambigua porque B habla dos veces. Si una de esas afirmaciones es verdadera y una falsa, ¿estamos o no estamos preparado para contar B como uno de aquellos "que está hablando con la verdad"?

Es, por ejemplo, claramente posible que la D declaración y B de la última declaración son las únicas verdaderas. En ese caso, la respuesta es de Uno, o Dos, dependiendo de cómo se cuente.

1voto

tkneis Puntos 111

He considerado: la verdad-teller = persona que siempre dice la verdad.

Las 3 primeras declaraciones sugieren, como se especificó, que todos los 3 (a, B, C) mentira, lo que significa que D está diciendo la verdad.

Así que tenemos una verdad clara aquí.

Lo que hace que este un poco confuso, es que el pasado pasado B declaración también es cierto, y la pregunta es "¿cuántos están hablando con la verdad en la conversación?", si no se especifica "nada más que la verdad".

Hemos D, con una clara verdad, pero también tenemos B, que una vez habló con verdad. Así que mi respuesta sería 2, debido a que B también habló de la verdad en la conversación (la última afirmación), aunque ocasionalmente mentido, el ajuste de la cuestión de los requisitos.

Edit: por Favor, lea WillOs comentarios, no hay otra solución, pero con la misma respuesta (2).

1voto

Gary Puntos 1

3 casos:

  • la verdad-teller (siempre dicen la verdad)

  • siempre mentiroso (siempre dicen una mentira)

  • ambiguo (no siempre dicen la verdad, no siempre es mentira)

Una dice que B es un "siempre" mentiroso, PERO B cambiar de opinión en C: en Primer lugar se dice que C es una "verdad", que dice tha Una y C dicen mentiras. Así que B no es un "siempre" mentiroso, Un dicho una mentira.

C dice que Una dice la verdad: B es un mentiroso. Pero ya sabemos que B no decir mentiras. Así que C le dijo una mentira.

B es "ambigua".

D dice que Un,B y C no son "verdad". Pero esto no significa que él dice que son "siempre mentiroso". De manera D decir la verdad. Podría ser también en estado de "ambiguo", como B, pero en esta conversación sólo dice la verdad.

Tan sólo D dice la verdad. solución: 1.

Pero la pregunta es:

Cómo muchos están hablando con la verdad en la conversación? y no se cuántas verdad hay en la conversación? debemos tener en cuenta que B también.

La respuesta es 2.

1voto

WillO Puntos 1777

Debido a que hay varios parcialmente correctas respuestas anteriores, pensé que sería útil reunir todas las respuestas correctas en un solo lugar.

Solución 1: La única verdadera declaraciones son D y B de la segunda instrucción. En este caso, el "número de personas que hablan la verdad" es de Uno, o Dos, dependiendo de si se cuenta B, que se encuentra una vez y le dice la verdad de una vez, como una "persona que habla de la verdad".

Solución 2: El único verdadero declaraciones son a y C, en cuyo caso la respuesta es Dos.

Solución 3: La única verdadera declaraciones son a, C, y D, en cuyo caso la respuesta es de Tres.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X