Dado que:
$$\int_{0}^{\pi/2}{\ln[\cos^2(x)+\sin^2(x)\tan^4(x)]\over \sin^2(x)}\mathrm dx=\pi\tag1$$
$$1-\sin^2(x)+\sin^2(x)\tan^4(x)$$ $$=1+\sin^2(x)[\tan^4(x)-1]$$ $$=1+\sin^2(x)[\tan^2(x)-1][\tan^2(x)+1]$$ $$=1+\tan^2(x)[\tan^2(x)-1]$$ $$=1-\tan^2(x)+\tan^4(x)$$
$$\int_{0}^{\pi/2}{\ln[1-\tan^2(x)+\tan^4(x)]\over \sin^2(x)}\mathrm dx\tag2$$
$t=\tan(x)\implies dt=\sec^2(x) dx$
$$\int_{0}^{\infty}{\ln(1-t^2+t^4)\over t^2}\mathrm dt\tag3$$
$u=t^2\implies du=2tdt$
$${1\over 2}\int_{0}^{\infty}{\ln(1-u+u^2)\over u^{3/2}}\mathrm du\tag4$$