Tengo una duda sobre la convolución.
He encontrado esta definición :
$$(f*g)(t)=\int_{-\infty}^{+\infty} f(t-\alpha) \ g(\alpha) \ d\alpha$$
Esta integral no converge:
$$\cos(t)*t=\int_{-\infty}^{+\infty} \cos(t-\alpha) \ \alpha \ d\alpha$$
Al contrario: $$ \mathscr{L} \{ \cos(t) * t \} =\mathscr{L} \{ \cos(t) \} \ \mathscr{L} \{t \}=\frac{1}{s^3+s}$$
Descomposición de fracciones parciales:
$$\frac{1}{s^3+s}=\frac{A}{s}+\frac{B}{s-i}+\frac{C}{s+i}$$
$$A=\lim_{s\rightarrow 0} \ \frac{1}{s^2+1}=1$$ $$B=\lim_{s\rightarrow i} \ \frac{1}{s^2+is}=-\frac{1}{2}$$ $$C=\lim_{s\rightarrow -i} \ \frac{1}{s^2-is}=\frac{1}{2}$$
$$\frac{1}{s^3+s}=\frac{1}{s}+\frac{-\frac{1}{2}}{s-i}+\frac{\frac{1} {2}}{s+i}$$
$$\mathscr{L}^{-1} \{ \frac{1}{s}+\frac{-\frac{1}{2}}{s-i}+\frac{\frac{1}{2}}{s+i} \}=1-\frac{1}{2} \ e^{it}+\frac{1}{2} \ e^{-it}$$
Luego, he encontrado esta otra definición de convolución (en una lección sobre la transformada de Laplace):
$$(f*g)(t)=\int_{0}^{t} f(t-\alpha) \ g(\alpha) \ d\alpha$$
¿Por qué hay dos definiciones diferentes sobre la convolución?
¿Cuándo tengo que usar uno u otro?
Gracias.