Alguien recuerda el método para esto? Creo que esto se ha hecho en el sitio $$\int_0^{\infty}\frac{\ln x}{x^2+a^2}\mathrm{d}x$$
Respuestas
¿Demasiados anuncios?Los problemas relacionados con: (I), (II), (III), $(4)$. Consideremos el integeral
$$ \int_{0}^{\infty}\frac{x^{s-1}}{x^2+a^2}\text{d}x, $$
que no es sino la Mellin de transformación de la función de $ \frac{1}{x^2+a^2}$ y está dada por
$$ F(s)=\int_{0}^{\infty}\frac{x^{s-1}}{x^2+a^2}\text{d}x = \frac{1}{2}\frac{\pi a^{s-2}}{\sin(\pi s/2)} $$
$$ \implies F'(s)=\int_{0}^{\infty}\frac{x^{s-1}\ln(x)}{x^2+a^2}\text{d}x = \frac{d}{ds}\frac{1}{2}\frac{\pi a^{s-2}}{\sin(\pi s/2)}. $$
Tomando el límite cuando $s \to 1$ el resultado deseado de la siguiente manera
$$ \int_{0}^{\infty}\frac{\ln(x)}{x^2+a^2}\text{d}x = \frac{\pi \ln(a)}{2a}. $$
Creo que @kiwi ment $$ \fbox {$I$} = \int_0^\infty \frac {\ln x}{x^2+a^2} dx = \left | u = \frac {a^2}x \Longrightarrow\left\{\begin{array}{c} \ln x = 2 \ln a - \ln u \\ dx = -\frac {a^2du}{u^2} \end{array}\right\} \right | = -\int_\infty^0 \frac{2\ln a - \ln u}{\frac {a^4}{u^2}+a^2}\frac {a^2 du}{u^2} = \\ 2\int_0^\infty \frac{\ln}{u^2+a^2}du-\int_0^\infty \frac{\ln u}{u^2+a^2}du = \fbox{$2\int_0^\infty \frac{\ln a}{u^2+a^2}du - I$} $$ A partir de la última parte es claro que $$ I = \int_0^\infty \frac{\ln}{u^2+a^2}du $$ Esta integral se puede encontrar fácilmente $$ I = \ln\int_0^\infty \frac {du}{u^2+a^2} = \frac {\ln un} \ \left.\mbox{atan}\ \frac ua \right|_0^\infty = \frac {\pi \ln}{2a} $$
O simplemente dejar que el $x=ay$
$$\int_0^{\infty}\frac{\ln x}{x^2+a^2}\mathrm{dx}=\frac{\ln a}{a}\int_0^{\infty}\frac{1}{y^2+1}\mathrm{dy}+\frac{1}{a}\int_0^{\infty}\frac{\ln y}{y^2+1}\mathrm{dy}=\frac{\pi\ln a}{2a}$$ porque dejando $y=1/z$ $\int_0^{1}\frac{\ln y}{y^2+1}\mathrm{dy}=-C$ (del catalán constante) , obtenemos $\int_1^{\infty}\frac{\ln z}{z^2+1}\mathrm{dz}=C$. Ahora, sume las $2$ integrales y conseguir que el $\int_0^{\infty}\frac{\ln y}{y^2+1}\mathrm{dy}=0$.
Chris.
$\newcommand{\+}{^{\daga}} \newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\a la derecha\vert\,} \newcommand{\cy}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\large\tt\mbox{It's almost done without any integral evaluation !!!.}}$
\begin{align} &\color{#00f}{\large\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + a^{2}}\,\dd x} ={1\over \verts{a}}\int_{0}^{\infty}{\ln\pars{\verts{a}x} \over x^{2} + 1}\,\dd x \\[3mm]&={\ln\pars{\verts{a}}\over \verts{a}}\ \overbrace{\int_{0}^{\infty}{\dd x \over x^{2} + 1}}^{\ds{=\ {\pi \over 2}}}\ +\ {1\over \verts{a}}\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + 1}\,\dd x \\[3mm]&={\pi\ln\pars{\verts{a}} \over 2\verts{a}}\quad +\quad{1 \over \verts{a}}\ \underbrace{\quad\bracks{\int_{0}^{1}{\ln\pars{x} \over x^{2} + 1}\,\dd x +\ \overbrace{% \int_{1}^{0}{\ln\pars{1/x} \over 1/x^{2} + 1}\,\pars{-\,{\dd x \over x^{2}}}} ^{\ds{=-\int_{0}^{1}{\ln\pars{x} \over x^{2} + 1}\,\dd x}}}\quad} _{\ds{\color{#c00000}{\LARGE =\ 0}}} \\[3mm]&=\color{#00f}{\large{\pi\ln\pars{\verts{a}} \over 2\verts{a}}} \end{align}
Vamos a la considerada una parte integral de ser $I$. El uso de la sustitución de $x=a\tan\theta \,d\theta$ para obtener: $$I=\frac{1}{a}\int_0^{\pi/2} \ln(a\tan\theta)\,d\theta=\frac{1}{a}\int_0^{\pi/2} \ln a\,d\theta+\frac{1}{a}\int_0^{\pi/2}\ln(\tan\theta)\,d\theta$$ Es fácil ver que $$\int_0^{\pi/2}\ln(\tan\theta)\,d\theta=0$$ (Lo anterior puede ser demostrado mediante la sustitución de $\theta=\pi/2-t$).
Por lo tanto, $$I=\frac{\pi}{2a}\ln a$$