Deje $\varphi: \mathbb R^{4} \rightarrow \mathbb R^{3}$: $$\varphi(x_{1},x_{2},x_{3},x_{4})=(x_{1}+x_{3}+x_{4},x_{1}+x_{2}+2x_{3}+3x_{4},x_{1}-x_{2}-x_{4})$$Find a basis $Un$ of space $\mathbb R^{4}$ and basis $B$ of space $\mathbb R^{3}$ such that $M(\varphi)^{B}_{A}={\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&0\end{bmatrix}}$
Creo que sé cómo hacer esta tarea. Sin embargo, yo realmente necesita una evaluación de si es correcto.
Yo:
$M(\varphi)^{st}_{st}={\begin{bmatrix}1&0&1&1\\1&1&2&3\\1&-1&0&-1\end{bmatrix}}$
Después de operaciones elementales en la matriz de $M(\varphi)^{st}_{st}$ tengo sistema de ecuaciones: $\begin{cases}
x_{1}+x_{3}+x_{4}=0 \\
x_{2}+x_{3}+2x_{4}=0\end{casos}$
So $\ker \varphi=lin\a la izquierda\{(-1,-1,1,0),(-1,-2,0,1)\right\}$. This vectors are in a basis $$ but I need two more vectors.
$\dim(\ker\varphi)=2$ so $\dim(im \varphi)=2$ and it can be: $(1,1,1),(0,1,-1)$ (I take $2$ linearly independent vectors from the matrix $M(\varphi)^{st}_{pt}$ columns). This vectors are in a basis $B$.
In this moment I have $=\left\{\alpha_{1}, \alpha_{2},(-1,-1,1,0),(-1,-2,0,1)\right\}$ and $B=\left\{(1,1,1),(0,1,-1),\beta_{3}\right\}$
From $M(\varphi)^{B}_{A}$ I have:
$\varphi(\alpha_{1})=1 \cdot \beta_{1}$
$\varphi(\alpha_{2})=1 \cdot \beta_{2}$
$\varphi(\alpha_{3})=0$
$\varphi(\alpha_{4})=0$
That is why:
$\varphi(\alpha_{1})=(1,1,1)$ and $\alpha_{1}=(1,0,0,0)$
$\varphi(\alpha_{2})=(0,1,-1)$ and$\alpha_{2}=(0,1,0,0)$
$\beta_{3}$ I can choose anyway because I do not have any dependencies on it. It can be linerly indipendent from other basis vectors, so it can be $\beta=(0,0,1)$
Estaré muy agradecido para la comprobación de esta solución, y la indicación de los errores.