Dejemos que $f$ se define por $$f(n) = \frac{\phi(n)}{n}.$$ A continuación, defina una secuencia $(n_k)$ por $$n_1 = 1, \mbox{and for } k \geq 2,$$ $$n_k = \ \mbox{smallest integer }n\ > n_{k-1} \ \mbox{with}\ f(n) > f(n_k)$$ para cualquier $n < n_k$ . Deduzca una fórmula para $n_k$ y $f(n_k)$ con pruebas.
Sol. Intento calaular algunos valores del $n_k$ de la siguiente manera : $$\begin{array}{c|ccccccccccccccccc} n & 1 &2&3&4&5&6&7&8&9&10&11&12&13&14&15&16&17 \\ \hline \phi(n) &1&1&2&2&4&2&6&4&6&4&10&4&12&6&8&8&16\\ \hline f(n)&1&\frac{1}{2}&\frac{2}{3}&\frac{2}{4}&\frac{4}{5}&\frac{2}{6}&\frac{6}{7}&\frac{4}{8}&\frac{6}{9}&\frac{4}{10}&\frac{10}{11}&\frac{4}{12}&\frac{12}{13}&\frac{6}{14}&\frac{8}{15}&\frac{8}{16}&\frac{16}{17} \end{array}$$
y así $n_1 = 1, n_2 = 2$ y $n_3 = 6$
Para ver qué $n_k$ debe ser, requiere cálculos, y todavía no veo la fórmula potencial.
¿Puede alguien sugerir la fórmula, o una forma más eficaz de analizar este problema?