Mathematica puede evaluar
$$\int\limits_0^\infty \frac{ \ln^{p} {x} \sin^{q} {x}}{x^r}dx $$
para todos los $p,q,r \in \mathrm{N}$ al $q \geq r>c, c \equiv q-r \ (\textrm{mod} \ 2) $, pero no se puede dar con la fórmula general. Las eventuales referencias que se agradece. También, las sugerencias sobre cómo hacer $p=q=r=1$ caso? Todos los resultados son una combinación de una fracción, de Euler–Mascheroni y logaritmos.
Así que, ¿hay una fórmula en el espíritu de :
ACTUALIZACIÓN
He cambiado la notación un poco aquí para que coincida con Raymond Manzoni primera referencia: integral converge para $p\geq q$ :
- para $p$ odd (impar) y $q$ aun(impar)
$$\int\limits_0^\infty \frac{\ln^{r}\! x \sin^{p} \! x }{x^q} \mathrm{d}x = \frac{(-1)^{r} (-1)^{\lfloor \frac{p-q}{2} \rfloor} }{ \Gamma(q) 2^p} \sum\limits_{i=0}^{r} \binom{r}{i} \frac{(-1)^{r-i} (r-i)!}{2^{r-i}} \sum\limits_{k=0}^{\lfloor \frac{p}{2} \rfloor - \text{mod}(2p-q,2)} \! \! \! \! \! \! \! \! \! \! 2(-1)^k \binom{p}{k}(p-2k)^{q-1} \sum\limits_{t=0}^{\lfloor \frac{r-i+1}{2} \rfloor} \frac{\text{Li}_{2t}(-1)\ln^{r-i+1-2t}\left(\frac{1}{(p-2k)^2}\right) }{(r-i+1-2t)!} \sum\limits_{\lambda \vdash i} \psi_0^{m_1}(q) \psi_1^{m_2}(q)\cdot \ldots\cdot \psi_{i-1}^{m_{l(\lambda)} }(q) \frac{\binom{i}{m_1,m_2,\ldots,m_{l(\lambda)}}}{m_1! m_2! \cdot \ldots\cdot ,m_{l(\lambda)}!} (-1)^{m_1+m_2+\ldots +m_{l(\lambda)}}$$
- para $p$ odd (impar) y $q$ odd(impar)
$$\int\limits_0^\infty \frac{\ln^{r}\! x \sin^{p} \! x }{x^q} \mathrm{d}x = \frac{(-1)^{r} (-1)^{ \frac{2p-q + \text{mod}(p,2)}{2}} }{ \Gamma(q) 2^{p-1}} \sum\limits_{i=0}^{r} \binom{r}{i} (-1)^{r-i} (r-i)! \sum\limits_{k=1}^{ \frac{p +\text{mod}(p,2)}{2}} \! \! \! \! \! \! 2(-1)^k \binom{p}{\frac{p +\text{mod}(p,2)}{2}- k}(2k-\text{mod}(p,2))^{q-1} \sum\limits_{t=0}^{\lfloor \frac{r-i+1}{2} \rfloor} \frac{\text{Li}_{2t}(-1) \sum\limits_{m=0}^{\lfloor \frac{r-i-2t}{2} \rfloor} \binom{r-i-2t+1}{2m+1} \left( \frac{\pi}{2} \right)^{2m+1} \ln^{r-i-2t-2m} \left( \frac{1}{2k -\text{mod}(p,2) } \right) }{(r-i-2t+1)!} \sum\limits_{\lambda \vdash i} \psi_0^{m_1 }(q) \psi_1^{m_2 }(q)\cdot \ldots\cdot \psi_{i-1}^{m_{l(\lambda)} }(q) \frac{\binom{i}{m_1,m_2,\ldots,m_{l(\lambda)}}}{m_1! m_2! \cdot \ldots\cdot ,m_{l(\lambda)}!} (-1)^{m_1+m_2+\ldots +m_{l(\lambda)}}$$
donde $\text{Li}$ es polylogarithm, $\psi$ es polygamma, y la última suma es superior a todas las particiones $\lambda = \left(1^{m_1} 2^{m_2} \ldots \right) $ $l(\lambda)$ es la partición de longitud.
siéntete libre para limpiar y improove si quieres, no tengo la voluntad de la derecha ahora.