$$\sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx.$$ Por favor alguien demostrar que esta ecuación es correcta !?
Respuestas
¿Demasiados anuncios?Se sabe que $$ \arcsin(x)^2=\frac{1}{2}\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2\binom{2n}{n}} $$ a ver Compañero de Hormigón Matemáticas - Matemática y Técnicas de Diversas Aplicaciones de la Z. A. Melzak p. 108
Entonces $$ \begin{aligned} \int_{0}^{1/2}\frac{4\arcsin(x)^2}{x} &=\int_{0}^{1/2}\frac{2}{x}\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2\binom{2n}{n}}dx\\ &=\sum_{n=1}^\infty\frac{2^{2n+1}}{n^2\binom{2n}{n}} \int_{0}^{1/2}x^{2n-1}dx\\ &=\sum_{n=1}^\infty\frac{2^{2n+1}}{n^2\binom{2n}{n}} \frac{\left(\frac{1}{2}\right)^{2n}}{2n}\\ &=\sum_{n=1}^\infty\frac{1}{n^3\binom{2n}{n}} \end{aligned} $$