Esto no es trivial $$I=\int\frac{\sqrt{x^2+25}}{x \sqrt{x^2+100}}\,dx$$ Let us try using $$\frac{\sqrt{x^2+25}}{ \sqrt{x^2+100}}=u^2 \implies x=\frac{5 \sqrt{1-4 u^4}}{\sqrt{u^4-1}}\implies dx= \frac{30 u^3}{\sqrt{1-4 u^4} \left(u^4-1\right)^{3/2}}du$$ So, $$I=-\int\frac{6 u^5}{4 u^8-5 u^4+1}\,du$$ Now, since the denominator shows pretty nice roots (it is a quadratic in $u^4$), partial fraction decomposition leads to $$\frac{-6 u^5}{4 u^8-5 u^4+1}=\frac{u}{u^2+1}+\frac{u}{2 u^2-1}-\frac{u}{2 u^2+1}-\frac{1}{2 (u-1)}-\frac{1}{2
(u+1)}$$ hace que el problema sea mucho más placentera.
El resultado de la integración es sólo una suma de logaritmos $$I=\frac{1}{4} \log \left(1-2 u^2\right)-\frac{1}{2} \log
\left(1-u^2\right)+\frac{1}{2} \log \left(1+u^2\right)-\frac{1}{4} \log \left(1+2
u^2\right)$$ Recombining all of that simplifies again and $$I=\tanh ^{-1}\left(u^2\right)-\frac{1}{2} \tanh ^{-1}\left(2 u^2\right)$$
Editar
Aplicando el mismo método para
$$I=\int\frac{\sqrt{x^2+a^2}}{x \sqrt{x^2+b^2}}\,dx$$ would lead to $$I=\tanh ^{-1}\left(u^2\right)-\frac{a }{b}\tanh ^{-1}\left(\frac{b }{a}u^2\right)$$